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Abstract 

Amplitude for color mixing is different from other 
amplitudes such as loudness. Color amplitude must refer to 
a light’s ability to look different from other lights, to 
express its redness or other chromatic intensity, so that its 
color is not lost during transduction. To reveal independent 
stimulus dimensions, a set of orthonormalized color 
matching functions is derived, similar to opponent color 
primaries. Following an idea of Jozef B. Cohen, it is then 
assumed that a light of unit power varies in wavelength 
through the spectrum. The track of that light in the 
orthonormal color space gives a curve that Cohen called 
“the locus of unit monochromats,” after he found it by 
different steps. The locus defines a surface that is interesting 
but not complicated, which Cohen called “butterfly wings.” 
Projecting the locus into a plane normal to the achromatic 
axis gives a boomerang shape with 3 well-defined local 
extreme points. The extrema are William A. Thornton’s 
Prime Colors, so a few steps reveal the inner workings from 
which the Prime Colors arise. The results can explain color 
mixing to beginners, but are also quantitative and ready for 
practical use. 

Introduction 

With regard to things that stimulate our senses, we all know 
what amplitude means—usually. A high-amplitude noise 
SOUNDS LOUD. Summer sunlight looks bright. When 
adaptation state is controlled, sensation is often a simple—if 
nonlinear—function of physical amplitude. Color mixing is 
different, and we all know this too. In a color match, lights 
add linearly, and the match does not depend on adaptation 
conditions. The CIE teaches us to predict color matches by 
certain algebraic steps, but the XYZ formulas lose the idea 
of “color amplitude,” which has practical importance and in 
fact lurks within a set of color matching functions, such as  
{ zyx ,, }. 

Consider the sensitivities of the three cone systems1, 
Fig. 1. Whatever color amplitude is, it should vanish at the 
ends of the spectrum and show a local minimum in the blue-
green region of the spectrum. We also see why the idea of 
amplitude in color mixing is not as simple as it might be. 
The cone sensitivities overlap! This is to our benefit in 
catching plenty of photons and in finely discriminating hues 
in the red to green range, but it complicates the discussion 
of color mixing. Consider, for instance, the traditional 

instructions for transforming color mixing data to new 
primaries. That formulation is really about overlap, in the 
absence of which every experimenter would set his 
primaries to the eye’s three well-separated sensitivity peaks 
and be done with it. 
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Figure 1. Spectral sensitivities of the 3 cone types. 

Have these issues of amplitude and overlap been 
addressed before? Yes, they have, though not with these 
words, usually. Opponent-color models2 emphasize the 
small but important difference between the overlapping red 
and green sensitivities (or long and middle sensitivities, if 
you like). For analysis of color amplitude, we can look 
particularly to the work of William A. Thornton3,4,5,6 and 
Jozef B. Cohen7,8. A fresh derivation below will show what 
color amplitude is and how it relates to practical work. What 
then comes out is one of Cohen’s results in a slightly 
different format. Out of that comes an interpretation for 
Thornton’s Prime Colors, and confirmation of the 
wavelengths at which the Prime Colors occur. In short, once 
the calculation starts in a certain direction, it proceeds with 
no arbitrary steps, and everything falls into place. 
“Everything” includes a new appreciation for Cohen’s 
“locus of unit monochromats,” an independent confirmation 
of Prime Colors, and graphical presentations for further use. 
It will be seen that the locus of unit monochromats is the 
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Figure 2. Orthonormal opponent color functions. Dash-dot = 1st 
vector = achromatic; solid = 2nd vector = red-green; short  dashes 

= 3rd vector = blue-yellow. 

amplitude of the spectrum for color mixing. Even beginning 
students, without learning the full background, will find 
color amplitude to be a stable concept with immediate 
meaning for such problems as color rendering by lights and 
the choice of phosphors and dyes for color reproduction. 

Terse Approach 
The formulation that we seek could be approached in 

many ways, but will tend to end up in the same place. Let us 
first derive some algebraic and graphical results. Then a 
further discussion can enhance understanding of color 
amplitude as a concept. First define a matrix M0 by2  

M0

















−−
−−=
0314.00212.00061.0
1567.06801.07401.0
09341.00

  (1) 

If the usual CIE color matching functions are the 
columns of a matrix C, 

C = [ zyx ,, ]  ,        (2) 
then a matrix G can be computed whose columns are 
opponent color functions: 

G  = CM0

T   ,   (3) 
where superscript T denotes matrix transpose. The columns 
of G approximate an opponent model of Guth2, with 
columns in the sequence 

G = [achromatic, red-green, blue-yellow]  . (4) 
Now perform Gram-Schmidt orthonormalization on the 
columns of G and call the result Ω. The first column of G, 
the achromatic function, is the familiar y times a constant. 
The first column of Ω is y  times a different constant. The 
term “achromatic” means that this is the sensitivity for 
whiteness. The columns of Ω retain the interpretation of Eq. 

(4), though they are quantitatively different. Symbol Ω 
stands for “orthonormal,” meaning that its columns, three 
vectors ωj , are color matching functions but with the 
additional property that: 

 ω
i

T ω
j
 = δ

ij
   .   (5) 

δij is the Kronecker delta, equal to 1 if i=j, equal to 0 if i≠j. 
These color matching functions can be graphed, Fig. 2. Kets 
|1〉, |2〉, |3〉 are synonymous with vectors ωj . A ket |j〉 is a 
column vector, the bra 〈j| is its transpose, a row vector. 
Amplitudes are fixed by the normalization requirement, 〈j|j〉 
= 1. To repeat, the  first vector, |1〉, is a constant times the 
ever-familiar y , |2〉 is red versus green, and |3〉 is a sort of 
blue versus yellow function, but with a yellow lobe that 
does not conform to other opponent-colors models. 

Because of the way that Gram-Schmidt operates on the 
Guth model2, which used cone fundamentals derived from 
CIE functions9, both |1〉 and |2〉 depend only on the red and 
green cone sensitivities. Only |3〉 has input from blue cones; 
in fact it has input from all 3 cones. For further discussion 
and derivations, the orthonormal property is extremely 
convenient, and yet a certain linkage to physiological 
fundamentals is preserved. The CIE’s y  has the 
significance that it fits such data as flicker photometry, and 
it is considered (by Guth2, for example) to be a sum of red 
and green inputs only. Here |1〉 shares those benefits. The 
new vectors are color matching functions in the familiar 
sense that if |N1〉 is a column vector representing a spectral 
radiance N1(λ), and |N2〉 another such radiance, the condition 
for a visual match is the usual one: 
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If the source of complication was the overlap of cone 
sensitivities, we have met the problem head on. The 
direction cosines among cone sensitivities are tabulated 
below. 

Cones direction cosine 
red, green 0.918 
green, blue 0.121 
red, blue 0.0579 

 
The orthonormal functions, of course, have cosines of zero 
among themselves. Now we should notice what color 
mixing means, and why it is linear. Light of a certain 
spectral distribution falls on a patch of retina, and the three 
cone types “interact” in the most simplified way, not by 
signaling each other, but by their differing photon catches, 
according to the light’s spectrum. The importance of the 
detection step derives from the information that is lost10. If 
two lights have different spectra, |N1〉 ≠ |N2〉 but they are 
metameric, meaning that they match according to Eq. (6), 
then the information that they differ is lost in detection. The 
detection step is the color mixing step, and color mixing  
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Figure 3. One view of a 3-D graph of the locus of unit 
monochromats. The axes are determined by the choice of 

orthonormal cmfs. Otherwise, the graph is the invariant one drawn 
by Jozef B. Cohen. 

amplitude must have something to do with action in color 
mixtures, not only with the achromatic dimension |1〉, 
which is essentially light-meter luminance. 
 Now suppose that we have a narrow-band light 
representing one watt of optical power8. Let its tristimulus 
vector be computed for the orthonormal basis, like either 
vector in Eq. (6). Then let the wavelength of the narrow 
band vary through the spectrum and trace the locus of the 
vector. The result is a curve in three dimensions. 
Wavelengths can be marked off along the locus. A 3-D 
graph has been prepared and colorized using Virtual Reality 
Modeling Language, VRML. The graph will be shown at 
the meeting and can be interactively rotated. The VRML file 
is also available on the author’s web site, 
http://www.jimworthey.com . A projection of the 3-D graph 
is seen in Figure 3. 

Figure 3 is essentially a parametric plot of the 
orthonormal basis functions, with the interpretation of a 1-
watt light moving through the spectrum. It is exactly the 
curve that Cohen8 called the “locus of unit monochromats,” 
even though my algebra is different from Cohen’s. The blue 
lobe of the surface is near the |3〉 axis, while the red and 
green directions on the |2〉 axis are easy to see—the axis 
itself is colorized, if you are seeing this in color. The 
achromatic or |1〉 axis looks more like it is coming out of the 
paper, and it lies close to yellow-green. Cohen didn’t 
emphasize specific basis functions and axes, so part of my 

contribution is the choice of basis functions, and the axes 
thus created. Because amplitude is not lost, the locus falls 
into the origin at the short and long ends of the spectrum. 
Seen in three dimensions, the surface is interesting but not 
intricately folded. Cohen called it “butterfly wings.”8 
Because the |1〉 axis measures whiteness, it is logical to 
think of the |2〉-|3〉 plane as the chromatic plane. Projecting a 
tristimulus vector into that plane loses only its whiteness 
component. Projecting the spectrum locus (“butterfly 
wings”) into |2〉-|3〉 gives the boomerang shape of Fig. 4. 
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Figure 4. The locus of Figure 3, but projected into the 2-3 or 
chromatic plane. The loci in Figures 3 and 4 are not boundaries or 

gamuts in the usual sense. 

Application 

No Purples? With a colleague, Michael H. Brill, I 
discussed this boomerang-shaped projection of the locus. It 
looked to be a kind of alternate chromaticity diagram, based 
on mathematically appealing orthogonal color matching 
functions. But, we asked, how can it be a chromaticity 
diagram without a line of purples? The answer is, it’s not a 
chromaticity diagram, but it is what it is. It is a projection of 
a tristimulus diagram, showing either sensitivity, or 
chromatic stimulus at unit power, however you want to look 
at it. It shows chromatic sensitivity with power not left 
out. It shows which wavelengths will act strongly, or not so 
strongly in chromatic mixtures. 

Prime Colors. In the |2〉-|3〉 projection, the spectrum 
locus has 3 extrema, 3 local maxima in its radius from the 
origin. Those wavelengths are Thornton’s Prime Colors! 
The radius peaks at 445, 525, and 608 nm. Here in 
Scottsdale in 1998, he reported 447, 541 and 604 nm as 
Prime Colors for the CIE 2° observer3. In truth, there are 
two ways to extract Prime Colors from the locus of unit 
monochromats. Consider Fig. 5, with wavelength on the 
abscissa. The upper curve is radius from the origin for the  
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Figure 5. Radii of the loci in 3 and 2 dimensions. In Jozef Cohen’s 
terminology, the radius in 3 dimensions is the square root of the 
diagonal of Matrix R. The peaks and local minima of the graph 

were found by the program that drew the graphs. 

locus in 3 dimensions. This is what Jozef Cohen called the 
square root of the diagonal of matrix R, and he described it 
as the amplitude of spectral lights. The lower curve is radius 
within the |2〉-|3〉 projection. The peaks for root diagonal of 
R are 445, 536, 604, while those for the projection are as 
just stated, 445, 525, and 608 nm.  

Suppose the question is “Which lights strongly affect 
chromatic color?” Then the Prime Colors based on projected 
radius may be appropriate. If the question is, “At what 
wavelengths will metameric spectra cross?” then the peaks 
of radius in three dimensions may be better. The point is not 
the small numerical differences, but the idea that now we 
see exactly where the Prime Colors come from. 

In Fig. 4, we saw immediately that the extrema are the 
Prime Colors, and one may quickly notice that those are for 
practical purposes the television phosphor colors11. Thornton 
invented his color-enhancing 3-phosphor lights based on 
Prime Colors, so the spectrum locus in orthonormal 
tristimulus space explains two common technologies. In 
more general terms, the locus shows the vector magnitude 
and direction of each narrow spectral band, describing its 
action in color mixing. Suppose that you bring a red apple to 
your teacher. The apple’s school assignment is simple, to be 
as red as it can be. To do this, it must reflect the red Prime 
Color and longer wavelengths; it should absorb the green 
Prime Color, which would tend to cancel out its redness. It 
relies on the classroom lighting to supply these 

wavelengths, and actual school lighting may fall short. That 
is the classic problem of Color Rendering, not usually stated 
in these terms. 

Power Budgets. The CIE’s chromaticity diagram in (x, 
y) is an optics lab diagram. In an optics lab equipped with 
large light bulbs and the proper slits and prisms, light of 680 
nm or 490 nm can be displayed and the intensity cranked up 
to give a bright ruby red or aquamarine. In real life, power is 
limited. Television and light bulb designers have power 
budgets. An image printed on paper has a power budget, 
imposed by the light under which it will be viewed. Even in 
daylight, the total power is ample, but the eye adapts to 
mean luminance. For an object to show strong chromatic 
color, it still must work with the daylight spectrum. A red 
leaf in autumn cannot reflect 300% of incident light in a 
narrow band at 650 nm. To be bright red, it must absorb a 
range of greens and reflect a range of reds, including the 
prime color region. 

If I were to say broadly “Color images must work with 
the available power,” the reader would say, “Well, of 
course!” That would not be news. The news is that the 
Cohen-like presentation goes to the heart of the problem, 
and it is easily calculated and invariant, and it reveals three 
spectral regions that are clearly most important, exactly as 
William A. Thornton has said. The orthonormal functions 
are a convenient tool that Cohen mentioned but did not 
emphasize. The shape of the curve is invariant to the choice 
of basis functions, so long as they are orthonormal. 

Practical Purples! In short, Figs. 3 and 4 speak to 
color mixing when power is limited, which is most practical 
situations. With this in mind, we see that there is a line of 
purples after all. It is the “line of practical purples” as 
drawn. It marks a region where approximately prime colors 
are efficient at making purples, more so than the extreme 
wavelengths of 400 and 700 nm. A line of practical blue-
greens is also seen, where color vision will respond better to 
a mixture of blue and green than to actual blue-green light. 
Some detail is lost by sketching the dashed lines in two 
dimensions, however the full 3-dimensional graph is also 
available for thinking about these issues. 

Why This Orthonormal Space? One rationale for the 
orthonormalized color matching functions is intuitive. If 
detection by cones loses information, and the goal of color 
technology is to stimulate color vision in its 3 independent 
dimensions, then color stimuli should be evaluated along 
truly independent dimensions. Another benefit is that it 
gives a new specific meaning to tristimulus values. If A is a 
matrix with any set of color matching functions as its 
columns, such as perhaps A = [ zyx ,, ] , then the projector 
matrix R can be found by7 

R = A(ATA)-1AT .   (7) 
Matrix R, discovered by Jozef Cohen, extracts from a 

spectral radiance |N〉 the component that lies in the vector 
space of the color matching functions, called |N*〉: 

|N*〉 = R|N〉 .   (8) 
In words, |N*〉 is the fundamental metamer of |N〉. R is 
invariant to the choice of color matching functions in A. 
They could be cone sensitivities, or they could be Ω. If we 
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let A = Ω = [|1〉, |2〉, |3〉], so the columns are the orthonormal 
color matching functions, 

R = Ω(ΩTΩ)-1ΩT .   (9) 
Thanks to orthonormality, the expression ΩTΩ is the 3×3 
identity matrix, so Eq. (9) reduces to Eq. (10), 

R = ΩΩT         <only for orthonormal cmf’s!>   . (10) 
Keeping in mind the definition of Ω and the rules of matrix 
multiplication, this can be written in an alternate form, 

R   jj
j
∑
=

=
3

1
.   (11) 

The notation of Eq. (11) is sometimes used for what is 
called a unity operator. In any case, Eqs. (8) and (11) then 
lead to 

|N*〉 = |1〉〈1|N〉 + |2〉〈2|N〉 + |3〉〈3|N〉 . (12) 
Each complete bracket, such as 〈1|N〉, is an inner 

product, and as such is a single number. These brackets are 
the coefficients in the approximation of |N〉 by a basis 
function expansion. They are also the tristimulus values of 
|N〉 in the orthonormal system. This fact gives a level of 
meaning to tristimulus values that they otherwise lack, and 
Eq. (11) aids in deriving formulas for such chores as 
converting a tristimulus vector from one basis to another1. 

Questions Answered 
In the traditional teaching of color science, the early 

color-matching experiments are discussed. Data lead to sets 
of three graphs, called color matching functions, but these 
functions are not unique. A change of primary wavelengths 
will lead to different data; in fact, the change of a single 
primary alters all three graphs. Thus transformation of 
primaries is introduced, presumably just as primaries were 
transformed in the 1920s. The particular notation has 
symbols that represent lights and not algebraic variables in 
the usual sense. Such an approach honors the original 
experimenters and avoids linear algebra. 

The important facts of color mixing thus present 
themselves in an unstable way, through sets of functions 
that can be transformed into alternate sets of functions. The 
teacher and students are unsettled by this version of reality 
and seek answers to practical questions such as “What color 
is a mixture of yellow and blue?” or “What hues can be 
displayed on a television?” One way to get rid of the 
changeable data is to choose a specific set of color matching 
functions, and stick with it. The CIE system is introduced 
and students are then speaking the world color language, 
and there is no turning back. 

In particular, color mixing is explained through the (x, 
y) chromaticity diagram, in which all possible hues are 
displayed, but the transition to (x, y) loses stimulus 
amplitude. I recall a question like this coming up when I 
was a student: “If you have 1 watt of 580 nm, and 1 watt of 
490 nm, does the mixture lie at the midpoint between the 
580 and 490 points on the chromaticity diagram?” The 
answer is “No, not at all,” and students learn to solve color 
mixing problems by algebraic manipulation of X, Y, and Z. 
No graphical scheme is offered for thinking about stimulus 
amplitudes, but the XYZ formulas work easily enough for 

predicting matches, so most work stays within the CIE 
framework. 

Now along come David MacAdam12 and William 
Thornton4 and they ask questions such as “Which 
wavelengths act most strongly in mixtures?” By thought 
experiments, they come up with graphs like Fig. 6. 

 

Figure 6.  This graphic is taken from an article by Thornton4 
concerning digital experiments in which narrow-band lights are 

added to Equal Energy White. 

The original caption reads in part, “Alterations of the 
chromaticity (x=0.333, y=0.333) of the equal-energy SPD 
by the addition of the same increment of power at 
successive wavelengths. Scale of the inset is four times that 
of the surrounding ... diagram.” What an interesting 
question to ask, “Which wavelengths act most strongly?” 

However, think about experimental color matching 
functions, Fig. 7. Suppose that you wanted to explain to a 
child what this set of color matching functions means. You 
could say that “These graphs show how strongly different 
wavelengths act in color mixtures. The red graph shows 
how strongly the lights pull in the red direction, for 
example.” The idea of different wavelengths acting more or 
less strongly was right there on the paper when the color 
matching data were first graphed. Thornton now knows this 
and has looked at Prime Colors more directly in terms of 
color matching data. 

The color matching functions in Fig. 7 are calculated 
based on narrow-band primaries set to Prime Color 
wavelengths. Theory mavens might ask if those color 
matching functions are orthogonal functions, if the prime  
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Figure 7. Color matching functions based on primaries of 604, 
536, and 445 nm, and the 2-degree observer. 

colors are at right angles in color space, and other such 
questions. The short answer is, no, the cmf’s are not 
orthogonal, and the Prime Color directions are not 
perpendicular, though they come pretty close. 
Conclusion. The orthonormal basis and the locus of unit 
monochromats answer the question that a student might ask, 
whether there is a graphical presentation for color mixing 
with amplitude not left out. Since the orthonormal color 
matching functions are perpendicular in the space of 
spectral functions (direction cosines = 0), it is logical to use 
them in computing tristimulus vectors. The Prime Colors 
are then found to be the wavelengths for which unit-power 
stimuli give the longest tristimulus vectors. The 3D 
colorized graph of the Locus of Unit Monochromats gives a 
larger context to Prime Colors and other features such as the 
line of practical purples. For 3D graphs in virtual reality, see 
http://www.jimworthey.com . 
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