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Abstract 
The Maxwell-Ives criterion (MI) says that for color fidelity a camera’s spectral 
sensitivities must be linear combinations of those for the eye. W. A. Thornton 
found certain “prime color” (PC) wavelengths, with special importance for color 
vision. At CIC 6, M. H. Brill et al. spoke in favor of “cameras that have peak 
sensitivities at the PC wavelengths.” MI and PC are related ideas. MI implies 
symmetry between the camera and the eye: the camera has its own prime 
colors, which should be similar to the eye’s. At CIC 12, J. A. Worthey presented 
an orthonormal opponent set of color matching functions as a path to J. B. 
Cohen’s Locus of Unit Monochromats (LUM), an invariant representation of 
color-matching facts. Here we present a concise method to evaluate a sensor set 
by comparing its LUM to the eye’s. Equal LUMs would mean that MI is met, and 
equal PC wavelengths would tend to mean that MI is loosely met. Two sets of 
camera sensors can have the same LUM, but differ in the effect of sensor noise. 
A numerical noise example illustrates the point. 
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Introduction: 
• Maxwell-Ives 
• Prime Colors 
• Locus of Unit Monochromats 
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The Maxwell-Ives criterion (= MI, also called the Luther criterion) teaches that, for 
color fidelity, the camera’s 3 spectral sensitivities must be linear combinations of human 
color matching functions. At CIC 6, M. H. 
Brill et al. discussed applications of Prime 
Colors (PC) to imaging[2].  
 

Since the prime colors are more or less 
the NTSC television phosphor colors[15], 
they must have something to do with taking 
and printing pictures, but does that mean 
that the camera sensors should peak at the 
prime colors? Human red cones peak at 
566 nm, not the red prime wavelength of 
603 nm. 

Jozef B. Cohen derived the projection 
matrix R and from it the Locus of Unit 
Monochromats (LUM)[4-6]. At CIC 12, 
Worthey showed that if orthonormal color 
matching functions are used, vectors in 
Cohen’s space are tristimulus vectors, a 
fact that Cohen probably understood, but 
did not emphasize. Traditional colorimetry 
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uses tristimulus vectors, 
















Z
Y
X

, but the arbitrariness of the XYZ system obscures the 

meaning of color vectors.  
Camera sensors are analyzed below by a simple algorithm, a few lines of computer 

code. It merges the criterion of Maxwell-Ives with ideas from Cohen [4-6] and elsewhere 
[3]: 

 
Key Ideas 

Matrix R = A(ATA)-1AT : 
1. Is an easy method for curve-fitting. To approximate function L by a set of basis 

functions (the columns of A),  
L* = RL,      (1) 

  where L* is the least-squares best fit. 
2. If L is a spectral power distribution, and the basis functions are color matching 

functions, then L* is a metamer of L in the usual sense. This use of R has to do 
with understanding colorimetry, and not with analyzing noisy data. 

3. If one set of color matching functions, A, is an invertible transformation of 
another, R computed from either one is the same large array of numbers. 

4. The columns (or rows) of R create the Locus of Unit Monochromats. Therefore, 
by item 3, the LUM is invariant to a change of basis. 
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Maxwell-Ives Criterion (MI) 
1. Says that a camera will have color fidelity if its sensors are linear combinations 

of human color matching functions. 
2. Implies symmetry between the eye and the camera.  
3. If a camera meets MI, then its LUM will be the same as the eye’s. 

 
Orthonormal Basis 

1. It is possible to make a set of 
orthonormal color matching 
functions that are linear 
combinations of another set, such 
as the 2° observer. The first 
function is the all-positive 
achromatic sensitivity, ω1, 
proportional to the usual y-bar and 
a sum of red and green cones. The 
second, ω2, is a red-green opponent 
function, with no blue-cone input. 
The third function, ω3, involves all 
3 cones and is a sort of blue or 
blue-yellow sensitivity. Grouping 
the orthonormal functions into one 
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matrix, we can write Ω = [|ω1〉 ω2〉 |ω3〉] . 
2. Combining ω1, ω2, ω3  into a single 3D graph (a parametric plot) gives the Locus 

of Unit Monochromats. In the figure below, the edge of the surface is the human 
LUM. Spheres are the 
LUM of  a Dalsa 
FTF3020C sensor. 
Arrowheads are “best fit” 
of camera to eye. 

 
3. Points on the Locus of 

Unit Monochromats are 
the tristimulus vectors of 
narrow-band lights, 
plotted wavelength-by-
wavelength. Each vector 
has a direction in color 
space, and an amplitude. 
Mixing of colors is 
modeled by vector 
addition, as in the usual 
XYZ system, but the 
orthonormal basis leads to 
intuitive vector 
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components and avoids arbitrary double-counting. 
4. In short, the LUM is a detailed picture of color mixing by the eye. Its shape is 

invariant; the choice of orthonormal basis sets its rotation/reflection with respect 
to the axes. 

5. A set of camera sensors has its own invariant LUM which can be found by 
creating an orthonormal basis. The camera’s orthonormal basis can be set up for 
easy comparison to the eye’s basis and LUM. 

6. The method of finding the camera basis, for purpose of this poster, is slightly 
evolved from that in the 6-page paper in the proceedings. The evolved 
method is a little simpler and applies for all cameras. 

7. The more evolved procedure can be called “the fit first method.” The computer 
code looks like this: 
     Rcam = RCohen(rgbSens) 
  CamTemp = Rcam*OrthoBasis 
  GramSchmidt(CamTemp, CamOmega) 
Here rgbSens is a matrix whose columns are the 3 camera sensor functions. 
Rcam is Cohen’s projection matrix R based on the camera functions. 
OrthoBasis is Ω, the 3 orthonormal vectors for human. CamTemp is then the 
best fit to OrthoBasis using a linear combination of the camera sensitivities. 
The columns of CamTemp may not be orthonormal, so Gram-Schmidt finds the 
orthonormal basis, CamOmega. That's the main result, and the camera’s LUM is 
a parametric plot of the 3 columns of  CamOmega. 
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8. CamTemp is the same set of “fit functions” as found in the proceedings paper. 
Here it is found in the most expedient way, as a preliminary to finding the 
camera’s orthonormal basis. The fit functions are in general not orthonormal. 

9. In comparing the camera’s LUM to the eye’s, the essential programming is easy. 
Example code for routines RCohen() and GramSchmidt() is on Worthey’s 
web site, http://www.jimworthey.com . The harder job, perhaps, is generating 3D 
and/or parametric graphs. 

Prime Colors 
1. Thornton called “Prime Colors” the 3 wavelengths that act most strongly in 

mixtures. [2,10] Within the LUM, the prime-color wavelengths (e.g., 446, 538, 
603 nm for the 2° Standard Observer) are approximately the wavelengths of the 
longest tristimulus vectors (e.g., 445, 536, 604 nm). [3,13] 

2. If the camera’s prime color wavelengths are similar to the eye’s, that is at 
least weak conformance to the Maxwell-Ives goal.  

Fun with Orthonormal Functions 
1. This poster emphasizes the Maxwell-Ives criterion and its realization as a 

graphical comparison between the camera’s LUM and that of the eye. Beyond 
that, the method is open-ended. Color mixing properties of the eye and of the 
camera have been expressed in a rationalized form (the LUMs). Orthonormal 
representations are easy to work with. 

2. For example, the paper has a worked signal-to-noise example of two cameras that 
give the same signal, but with differing amounts of noise. Derivations within the 
example are simplified because of the orthonormal basis. 
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3. Many derivations can be done with a unity operator, ΩΩT. When the orthonormal 
basis Ω has been found, then R = ΩΩT. Rather than multiply out ΩΩT to get R, 
we can use the unity operator differently. Suppose that we want to know the 
conversion from tristimulus vectors in the orthonormal scheme to those in the 
old-fashioned XYZ system. The tristimulus vectors are 3-vectors, but we can’t 
start there. 

4. Let’s say that the XYZ basis is A = [ ]zyx , and Ω is an orthonormal basis also 
based on the 2° observer. Then the projection operation on A does not change it. 

A = ΩΩT A   .    (2) 
  Now group terms: 

A = Ω[ΩT A]   .  (3) 
The product in square brackets is a 3×3 matrix. Give it a name: 

B = [ΩT A]   .     (4) 
Then 

A = ΩB   .    (5) 
Now if |L〉 is a light’s SPD expressed as a column vector, and the XYZ 
tristimulus vector is called Z, then the usual calculation can be expressed as: 

Z = AT|L〉      .     (6) 
In the orthonormal system, the tristimulus vector is called V: 

V = ΩT|L〉      .       (7) 
So, combining Eqs. (6) and (7), etc: 

Z = (ΩB)T|L〉           (8) 
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Z = BT ΩT|L〉        (9) 
Z = BTV    ,    (10) 

which is the transformation that was sought, from tristimulus vector V in the 
orthonormal system to tristimulus vector Z in the legacy system. 

 
5. The essential trick is in Eq. (2) where ΩΩT does not change A, because the 

columns of A are linear combinations of the orthonormal basis Ω. With those 
ideas in mind, one can derive needed formulas, such as the transform from camera 
signal (a 3-vector) to a vector in the camera’s orthonormal or best fit system (2 
different possibilities!). 

6.  Figure of merit: The methodology presented puts the eye’s and camera’s color 
matching information into a standardized form. By extension, the “best fit” 
functions for the camera are in a standard form, since they are a best fit to Ω, the 
eye’s standardized functions. We can let ∆ be the discrepancy matrix, and Φ be 
the matrix of fit functions as in the proceedings. Then 

∆ = Φ − Ω     .     (13) 
Each row of ∆ is a vector difference showing the error of the best-fit functions at a 
particular wavelength. The summed square of those 3 elements is the squared 
vectorial error. The sum of the wavelength-by-wavelength errors is the total sum-
square error of the approximation, and a suitable figure of merit. 
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Examples: 
Nikon D1 Camera 

 

 
The camera sensors can be compared to human cones. The smooth curve below, shown 
as the edge of a surface, is the human LUM. Spheres are the camera LUM according to 
the fit first method. Arrowheads are the best fit of camera sensors to human. The same 
info is below in other formats. 
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Nikon D1 Camera (continued) 
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Nikon D1 Camera (continued) 
 

 
 
Each of the figures above is a 2D projection of the eye’s LUM (red dashes), the camera 
LUM (black solid), and the best fit (green arrowheads). The camera designer might want 
to see the same information in ordinary graphs versus wavelength: 
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Nikon D1 Camera (continued) 
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Quan’s Optimal Sensors 
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Quan’s Optimal Sensors (continued) 
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Quan’s Optimal Sensors (continued) 
 
 

 

Quan Optimal Sensitivities Orthonormalized
Fit First, Then Orthonormalized
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thicker curves = Quan optimal rgb, FF method
thinner = 2 degree observer
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Dalsa FTF3020C Sensor 
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Dalsa FTF3020C Sensor (continued)

0.20.10−0.1 v2
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Dalsa FTF3020C Sensor (continued) 
 
 

 

900800700600500400300
wavelength

Thin = 2 deg Observer, orthonormalized
Thicker = 2 deg Observer approx. by Dalsa FTF3020C
long-short = ω1, long dashes = ω2, short dashes = ω3
Fit first, then orthonormalized, then fit again.
The second fit should be the same as the first, but
for orderly software, the fit is repeated.
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Eye Approximated by Dalsa FTF3020C
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Foveon X3 Sensors, Without Prefilter 
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Foveon X3 Sensors, Without Prefilter (continued)
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Foveon X3 Sensors, Without Prefilter (continued) 
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Lyon and Hubel propose a “prefilter” over the Foveon X3 array: 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

On the next page, the prefilter is combined with the sensors above. 



25 

Foveon X3 Sensors, With Prefilter 
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 Foveon X3 Sensors, With Prefilter (continued) 
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Foveon X3 Sensors, With Prefilter (continued) 
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So, In Summary: 
• A general idea was presented at CIC 12, to use orthonormal color matching functions 

as a path to graphing vectorial sensitivities, vectorial stimuli, and the Locus of Unit 
Monochromats, all in Jozef Cohen’s color space. 

• Orthonormalizing the camera’s sensitivities leads to an LUM for the camera. If it’s 
the same as human, the Maxwell-Ives criterion is satisfied. Where it deviates, the 
deviations have meaning for the camera designer. 

• Well-known methods give a “figure of merit” for a camera’s color fidelity. The 
LUM method can give a figure of merit and much more. 

•  Orthonormal functions make many derivations easy. For example the camera’s 
LUM or “best fit” functions can be targets for transformations from camera signals 
to human color space. It is easy algebra to find the transform matrix from sensors to 
best fit. See the proceedings article and http://www.jimworthey.com . 

• Another important application of vectorial color is color rendering [3]. If you are 
designing copiers, the orthonormal basis of your sensors could be used as a starting 
point for color rendering analysis. You could easily see how your light source affects 
color contrast and fidelity. Detailed color rendering examples are on the web site. 

• In all these methods, facts are revealed, while hidden assumptions and arbitrariness 
are absent. 

• This poster’s on the web site, too. 
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