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Abstract
A companion article introduced a set of orthonormal opponent color matching functions. That
“orthonormal basis” is an expedient for plotting lights in Jozef Cohen’s logical color space.
Indeed, graphing the new color matching functions (CMFs) together (as a parametric plot) gives
Cohen’s invariant “locus of unit monochromats,” or LUM. In this article, the functions and
related vector methods are applied to fundamental problems. In signal transmission and
propagation-of-errors work, it is desirable to describe stimuli by decorrelated components. The
orthonormal CMFs inherently do this, and an example is worked out using a large set of color
chips. Starting with the orthonormal functions, related functions, such as cone sensitivities, are
graphed as directions in color space, showing their intrinsic relationships. Building on work of
Tominaga and co-authors, vectorial plots are related to the problem of guessing the illuminant, a
step towards a constancy method. The issue of color rendering is clarified when the vectorial
compositions of test and reference lights are graphed. A single graph shows the constraint that
the total vectors are the same, but also shows the differences in colorimetric terms. Since the
LUM summarizes a trichromatic system by a 3-dimensional graph, dichromatic observers can be
represented by 2-D graphs, revealing details in a consistent way. The “fit first method” compares
camera to human, applying the Maxwell-Ives criterion in graphical detail.
<224 words>

< The figures are in another file:  http://www.jimworthey.com/appsvectorialfigs.pdf  >

Introduction
Background. A companion article1 introduces a set of orthonormal opponent color matching
functions, which for short can be called the orthonormal basis. The orthonormal basis can be a
transform of the CIE’s 2-degree or 10-degree observer2,3, although the ideas transcend the choice
of standard observer.  In traditional practice, color vectors [X Y Z]T are added numerically but
seldom graphed or discussed, presumably because of the arbitrariness in the XYZ scheme. 
When the orthonormal basis is used, vectors plot into Jozef Cohen’s intrinsically more logical
color space. In effect, the research of Jozef Cohen, William A. Thornton, Michael H. Brill,
Sherman Lee Guth, Worthey and others bears fruit in the set of three functions.1 It is not that the
functions evoke the personalities of the researchers, their big words and quirky modes of
expression, but the opposite. Decades of research at last allow us to take the personalities and
arbitrariness out of the color mixing discussion. Color stimuli add linearly, which sounds simple,
but the overlap among cone sensitivities must be dealt with. In color work, the issue of overlap is
confronted by opponent colors, but also by Cohen’s Matrix R.4-6 In mathematics, an orthonormal
basis is a general means for working with a set of linearly independent functions. Combining all
these ideas leaves little room for arbitrary features, but fosters clear discussion. In this article, the
orthonormal basis and vectorial methods will be applied to some interesting problems.
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Method. The orthonormal functions are an achromatic (whiteness) function, a red-versus-green
function, and a kind of blue-versus-yellow function that is not very different from just blue
sensitivity, Fig. 1. Cohen’s invariant color space thus gains axes with color names: whiteness;
red or green; and blue or yellow. The functions can be called T1(8), T2(8), T3(8) or they can be
the columns of a matrix S:

S = [|T1, |T2, |T3,]      . (1)

The ket notation, such as |T1,, makes explicit that the functions are being written as column
vectors. The achromatic function T1 is proportional to the familiar y6 and is considered to be a
sum of red and green cone sensitivities (with certain coefficients). Function T2 is a difference,
red cones minus green cones, such that it is orthonormal with T1. The third function has
contributions from all three cone types, and completes the orthonormal set. That is

+Ti|Tj, = *ij     , (2)

where *ij = 1 if i=j, 0 otherwise. The bra form, +Ti|, is a row vector, so +Ti|Tj, is an inner

product, which one could also write as . The bracket notation suppresses the( ) ( )ω λ ω λ
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variable of summation (or integration) 8, and the limits.

As with any color matching functions, one may find each function’s inner product with the SPD
of a light L, yielding the tristimulus vector V of the light:

V  =  = ST|L,     . (3)
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That is to say, the 3-vector V is a summary description of the radiometric function L, which
might be a 471-vector expressing radiance versus wavelength. In the legacy color algebra, the
tristimulus vector is [X Y Z]T.

Applications
Correlation of variables. One benefit of an opponent color step is that its outputs are less
correlated than the receptor signals, more suited for efficient use of a communications channel.7

In color metrology, less correlated color signals make it more practical to estimate propagation
of errors.8,9

We can see by examples how the orthonormal basis expresses stimuli in comparatively
decorrelated vector components. García-Beltrán, Nieves, Hernández-Andrés, and Romero
calculated “Linear Bases for Spectral Reflectance Functions of Acrylic Paints,” and as a starting
point measured spectral reflectances of numerous paint samples prepared by a Dr. Eloisa
Jiménez Martín.10 Dr. García kindly sent to me as computer files the spectral reflectances of
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5572 samples, measured from 400 nm to 700 nm, at 1 nm intervals. The authors sought to have a
“gamut of spectral reflectance curves as broad and varied as possible in order to cover the
greatest range of observed variation in the functions of opaque objects that surround us.”10 They
classified the samples into 5 hue categories: red, yellow, green, blue, and purple, with 1080,
1062, 1207, 1063, and 1160 samples, respectively, as I received the data.

A varied set of object spectral reflectances is thus available. For an example of correlated
measurements, let red and green cone stimuli be calculated according to human cone
sensitivities, with D65 as the light, for each of the 5572 samples. In Fig. 2, each dot corresponds
to a paint chip, plotted according to its cone stimuli, R and G. The red, green, blue, and purple
groups are plotted in their nominal colors; the dots for the yellow group are plotted in maroon.
The correlation coefficient of R and G is 0.976, meaning that they are highly correlated. The
formula for correlation coefficient is symmetrical in the two variables; it does not matter which
is named first. In Fig. 2, the stimuli cover a region near a straight line and are clearly correlated.

Fig. 3 shows a plot with the same paint samples and light D65, but now v2 is graphed vs v1 ,
based on the orthonormal functions T2, T1, according to Eq. (3). Now the correlation coefficient
is 0.180, and the points are visibly more spread out. Although correlation has been reduced, the
joint variation of v1 and v2 is still constrained by a rough gamut boundary.

Fig. 4 moves to the XYZ system. The object colors and light remain the same, but X is graphed
versus Y. The correlation coefficient is found to be 0.960. Table 1 lists the correlation
coefficients and direction cosines for 9 pairings. Notice that direction cosine is a simple result
involving only two sensitivity functions, whereas correlation coefficient is a statistic involving
the paint chips and the light, along with two sensitivities.

Table 1. Correlation coefficient and direction cosine for various pairings of functions. The
correlation coefficients are based on D65 and the paint samples as in Figs. 1-3. Direction
cosine is a measure of overlap between the sensitivity functions.

Functions compared Correlation Coefficient Direction Cosine

R cones, G cones 0.976 0.918

T1, T2 0.180 0

x6, y6 0.960 0.760

R cones, B cones 0.520 0.058

G cones, B cones 0.619 0.121

x6, z6 0.548 0.255

y6, z6 0.557 0.082

T1, T3 0.522 0

T2, T3 !0.303 0
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The three function pairs compared graphically and above the heavy line in Table 1 are the most
interesting and somewhat comparable. In nature, the R and G cones highly overlap, and the B
cone sensitivity is by comparison isolated in the short-wavelength end of the spectrum. (Night
vision sensitivity falls neatly into the gap between B and G cones, but that is far off the topic
here. The topic is how to make better use of established knowledge about trichromatic color
vision.) In the orthonormal system, stimulus values v1 and v2 are by design an alternate
presentation of the information in R and G. In the XYZ system, Z is the blue stimulus, so X and Y
have the R and G information.

The direction cosine of two vectors f and g is defined by

direction cosine = +f|g,/(+f|f,+g|g,)1/2    . (4)

For vectors in 3-space, Eq. (4) agrees with the usual idea of the cosine of the angle between
vectors, but it applies also to vectors of higher dimension, such as functions of wavelength.

In short then, opponent-color systems are expected to provide a decorrelated representation of
red-green information, and the orthonormal system serves this purpose. By working with a set of
measured data we get a practical demonstration and minimize theoretical discussion. I do not
claim that the orthonormal basis is in some way optimum for decorrelating stimulus values, as
evaluated by the correlation coefficient. That would be hard to prove because the calculation
depends on the specific paint samples and the light. We can say that the orthonormal basis
spreads out stimulus vectors as much as possible, and the XYZ system by comparison squeezes
the vectors together. Figs. 2-4 can be thought of as projections into certain planes of a set of
tristimulus vectors, and in particular of the red-green information. Figure 3, which spreads out
the red-green information, agrees best with the normal concept of graphing. If one dot
corresponds to a red chili pepper and another to a green bell pepper, the difference is apparent.

Propagation of Errors. When measured values are added or otherwise combined, reduced
correlation of the vector components makes it more practical to estimate the error in the result. If
the errors are considered independent, then they combine as the square root of the sum of the
squares, or some other simple formula. If the errors are covariant, more complicated formulas
apply and covariances must be estimated.11 It is desirable to assume that errors are independent,
even when it is not perfectly true. Tristimulus vectors found from the orthonormal basis have
reduced covariances among the components, especially between red and green.

David MacAdam asserted that orthonormal CMFs give uncorrelated errors under certain
conditions8. Starting with cone sensitivities, Buchsbaum and Gottschalk found transformed
signals for optimum information transmission, a set of orthonormal CMFs7. The analysis above
is intended to have a more practical flavor. The orthonormal basis has various attractive qualities
and was already defined1. MacAdam’s and Buchsbaum’s general ideas are tested above on real
data. MacAdam suggested in 1953 that “some use for orthogonal mixture functions may be
found” in color television, and indeed the NTSC color television standard used a kind of
opponent-color system12. More generally, the idea of efficient signal transmission7 applies to
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image compression. The new basis S–in fact very similar to that found in Ref. 7–could be used
as a starting point in compressing color images.

MacAdam’s orthonormal functions, like S, are based on {x6, y6, z6}. We now know, based on
Cohen’s work4-6, that any CMFs equivalent to an initial set lead to the same projection matrix R,
and therefore to the same locus of unit monochromats, LUM. That is, if the LUMs are
considered to have wavelength markings, and the axes are ignored, then the three-dimensional
shapes will be congruent. (If one is a mirror-image of the other, a minus sign can be introduced.)
Buchsbaum started with Vos-Walraven cone functions7, but still the “Buchsbaum LUM,” would
be similar.

Color matching functions mapped to 3-vectors. The previous article’s Fig. 11 illustrates
alternate sets of color matching functions that are linear combinations of a given set, such as the
2° observer. Alternate sets predict the same color matches, but differ according to further
meaning, whether cone sensitivities, CIE primaries, or something else. Suppose that C is such a
set of CMFs, known to be a linear combination of |T1,, |T2,, |T3,. That is,

C = [|c1, |c2, |c3,] , (5)
related to S by

C = S B , (6)
where B is a 3×3 transform matrix. Multiply Eq. (6) on the left by ST. By orthonormality, STS
is an identity matrix, then

B = STC  . (7)
We then notice that
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For numerical calculation, Eq. (7) would suffice, but Eq. (8) has an interesting property. The 3
columns of B are the tristimulus vectors of the 3 vectors |cj,, or would be if the sensitivities |cj,
were lights. These column vectors can be plotted to visualize the relationships among CMFs.

Fig. 5 presents an example. The basis functions plot to the axes themselves since, for example,

ST |T1, =   , (9)
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by orthonormality. Since y6 is proportional to T1, it also plots to the v1 axis. (This one discussion
ignores vector lengths.) Red and green cones lie in the T1-T2 plane.  x6 is out of that plane. Blue
cones are labeled with a simple ‘b,’ which is not legible but overprinted on the notation z-bar,
since those functions are proportional. Fig. 5’s pictorial presentation is complemented by
numerical details such as the direction cosines of Table 1. Fig. 5 shows intuitively which
functions are similar or not similar. For example, the direction cosines in Table 1 are computed
directly by Eq. (4), but the same results could be computed from the 3-vectors underlying Fig. 5.
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Importance of orthonormality. The statements about Fig. 5 do not apply if the starting
functions are a non-orthogonal set, such as {x6, y6, z6}. Then for example, x6 does not plot to the X
axis and cosines between 3-vectors are not the cosines between the original functions. When the
orthonormal CMFs are used, the simpler rules apply: T1 plots to the v1 axis, and the cosine
between two vectors in the diagram is the same as the cosine between the original functions. In
fact, if c and d are CMFs, the inner product of the functions equals that of the corresponding 3-
vectors. Recall that with the orthonormal basis, the tristimulus values are the coefficients in the
orthonormal function expansion of a function:

|c, = c1|T1, + c2|T2, + c3|T3,  , (10)

|d, = d1|T1, + d2|T2, + d3|T3,  , (11)

where cj = +c|Tj, and dj = +d|Tj, . Then

+d|c, = ( d1+T1| + d2+T2| + d3+T3| ) ( c1|T1, + c2|T2, + c3|T3,)   . (12)

The product on the right contains 9 terms, but by orthonormality, Eq. (2), 6 of them are zero, and

+d|c, = d1c1 + d2c2 + d3c3   , (13)

which is the inner product of the 3-vectors. The direction cosine, Eq. (4), is based on inner
products.

Lighting and color
If two white lights have the same total tristimulus vector, but markedly different spectral
composition, then they are said to differ in color rendering. Making a transition from spectral
composition to vectorial composition reveals differences between the lights, and that method
was illustrated in the earlier article.1 To make a fresh start here, let us review what color
rendering is not.

Guessing the illuminant. Vrhel et al.13 measured spectral reflectances of 64 Munsell Colors
including 12 neutrals. Let the 64 chips be illuminated by two blackbody spectra, first 5000 K,
then 6500 K. The two lights are set to equal values of v1, the achromatic stimulus component. (In
other words, they are equated for illuminance on the chips.) When the light changes, the
tristimulus vector of each colored paper changes, Figs. 6, 7 and 8. The lightest neutral, N9.5, is
indicated on each drawing and serves as a proxy for the light itself. A virtual reality 3D graph
may also be available on the web site.14 The vector shifts are the physical substrate for any
potential color constancy mechanism. That is, a change of lighting occurs and the figures show
the resulting changes in the 64 stimuli, which a constancy mechanism would be intended to
reverse15. Tominaga, Ebisui and Wandell studied the color effects of blackbody lights at different
temperatures16,17. Using stimulus vectors based on camera sensors, they found the temperature
shift to be best revealed by an object-color gamut in a red-blue plane. The details were specific
to the camera used, but the idea is more general.
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Using the invariant space, object color gamuts or averages could be worked out in the v2-v3

plane, Fig. 8, or v3-v1, Fig. 7. The key idea is to project the vectors into a plane where the
increase of blue stimulation with increasing color temperature becomes evident. In Fig. 8, the
locus of blackbody light at constant v1 is indicated by circles, labeled with Kelvin temperatures.

To restate, Tominaga et al.16,17  saw the value of color vectors, in preference to other measures of
stimuli. Mapping colors of a scene to vectors, then projecting into a plane with blue on one axis,
revealed a marked gamut shift with changing temperature of a blackbody illuminant. Projecting
gamuts into (x, y) was not helpful.16,17 Vectors V computed with the orthonormal basis can also
reveal the blueness, and therefore the color temperature, of a light. The section below on camera
analysis shows how electronic sensitivities can be treated similarly to human ones.

Blackbody plane. A special plane can be defined for tracking the effects of blackbody
temperature. The blackbody locus (at constant radius, for example) in the 3D invariant space is
not parallel to the v1-v2 or v2-v3 plane, but does lie close to a plane through the origin, especially
for temperatures above 2000 K. Color vectors from the origin for the 2 blackbodies at 3000 K
and 10000 K can be used to define a blackbody plane. As one blackbody light is substituted for
another, object colors will move roughly parallel to this plane, and projecting them into the plane
will give a 2D picture with a good view of the light’s effects. In that presentation, algorithms for
recovering the light can be visualized and tested. Using the algebra of Appendix A, the 64
Munsell colors are plotted in that plane, Fig. 9. The colors of the lights are essentially the tail and
head of the arrow for N9.5. The heavy black arrow indicates the mean stimuli under the 2 lights.
The dashed lines then project those colors toward the blackbody locus, showing that average
chip color is at best an indirect measure of light color. Results for actual scene data may differ;
the point here is that a change in blackbody temperature gives systematic object color shifts, well
visualized in the invariant space or projected into a “blackbody plane.” 

Color temperature is usually considered a dimension of normal variation among white lights,
consistent with the picture of object colors marching in formation in Fig. 9, and with the
variation among reference illuminants in the Color Rendering Index” document18. So-called
“color rendering” then is the issue of white lights whose variation is abnormal. Such a light can
have the same tristimulus vector as a normal light—blackbody or daylight—but a different
vectorial composition. One could say “different spectral composition,” but a vectorial approach
keeps colorimetry in the discussion.

Color rendering. For a narrow-band light of unit power (a “unit monochromat”) and
wavelength 8, there is a vector T(8) of fixed direction and amplitude. Those vectors are the rows
of S and trace the LUM. A more general light has a power distribution P(8). For the narrow
band centered at 8, the vector is P(8)T(8). Symbol T (lowercase omega) is bold, to emphasize
that P(8) is a scalar but T(8) is a vector with length and direction in color space. If 10-nm bands
are used, then for each 10 nm there is a vector P(8)T(8) representing that band’s contribution to
the light’s total tristimulus vector. In simple terms, a light has about 30 degrees of freedom,
since (700-400)/10 = 30, meaning 30 vector amplitudes. The directions of the small vectors can
vary, but only a little. The light’s total tristimulus vector has 3 degrees of freedom. Most lights
of poor color rendering fall short in similar ways, but treating a light as a sum of about 30
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vectors does not pre-judge the situation. Looking at vectorial composition applies colorimetry to
each wavelength band, then compares the reference and test lights in detail. Starting at short
wavelengths, the vector components of each light are added tail-to-head1, confirming that test
and reference give similar total vectors, but take different paths to the total.

(It is admittedly a little confusing to focus on the rows of S as being 3-vectors. In effect, we are
looking at the usual calculation of tristimulus vectors, and re-arranging the order of summation.
Re-arranging the order of sums is one of the basic tricks of applied math, and a benefit of
thinking in vector terms.)

The previous article had one example of a mercury vapor light compared to JMW daylight1. A
figure showed a view of a 3-dimensional graph. Problems that occur are mainly a matter of reds
and greens1,19,20, making the v1-v2 plane appropriate for a flat projection. Fig. 10 again shows the
vectorial composition of the same mercury light versus daylight, but now projected into v1-v2. In
Fig. 11, the 64 Munsell chips13 are plotted in the invariant space, then projected into v1-v2. The
chips lose redness (v2 > 0) or greenness (v2 < 0) and crash towards neutral19. Fig. 11 tells the
main story, but the 3D picture and other flat views could be generated. Nothing forces us to lose
information.

Color vision defects
Fig. 5 and the related discussion show that the 3 cone pigments have specific directions in color
space. When a person has two normal cone systems, but lacks one type, then the remaining
receptor systems define a plane. The trichromatic LUM can be projected into that plane using the
method of Appendix B, giving a mapping of the spectrum for each type of defect, indicated by
the heavy black lines in Figs. 12-14. (Please ignore the thinner lines at first.) Within the stated
method, plus and minus axis directions were chosen for convenience. Where the dichromatic
LUM approximates a straight line from the origin, we expect poor wavelength discrimination
and without belaboring the details, that is consistent with data21. Alternatively, an orthonormal
basis could be generated directly from the sensitivities of the color defective’s remaining cones,
giving the same 3 LUMs, but different axes.

Now consider the thinner curves in Figs. 12-14, which have their own wavelength markings.
They represent a chain of narrow-band stimuli being summed for the equal-energy light. In Fig.
10 and elsewhere, the chain of vectors was shown with arrowheads and 10-nm wavelength
intervals. Now the intervals are 1 nm, and arrowheads are absent. The summed chain gives the
vector of the light, and the dashed line is the locus of greys and whites for each observer.
(Alternatively, the dashed line is the light’s vector, with no arrowhead.) Keeping in mind that
there is no third dimension to these defective color spaces, we see in each case that the rules of
color mixing cause a certain wavelength to match the white light, where the dashed line meets
the LUM. While experimental subjects probably were not asked to match an equal energy light,
the figures are consistent with the textbook “neutral points” of 494 nm for protanope, 499 nm for
deuteranope, and 570 nm for tritanope2.

This discussion is not meant to discover new results, but to show that vectorial methods can
describe dichromatic color mixing using the same concepts applied to trichromats. In teaching
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colorimetry to students, one could omit the details of Appendix B and simply state that Figs. 12-
14 show the loci of unit monochromats for dichromats. An observer with anomalous color vision
could in principle be described by his LUM, but that would call for detailed data.

Camera Analysis
Maxwell-Ives Criterion. The Maxwell-Ives criterion,22-24 says that for color fidelity a camera’s
spectral sensitivities must be a nonsingular transformation of those for the eye. Departures from
the ideal are sometimes reduced to a figure of merit25-27, but the concept is fundamental and a
starting point for sensor design.24

Recall that the Locus of Unit Monochromats (LUM) is the same, independent of which
transformed color matching functions are used as a starting point. Therefore, the eye’s LUM
expresses the combined effect of the three cone types, in an invariant form. A color camera has
(at least) 3 color sensor types, so by the same logic it has its own LUM. If the camera’s LUM
matches that of the eye, then it sees colors like a human, meaning that it meets the Maxwell-Ives
criterion. When they differ, the two LUMs define different color spaces and there is no ideal
alignment. Nonetheless, the camera’s LUM can be found in a convenient orientation.

The Fit First Method. In the Fit First Method22, we find the linear combinations of the camera
sensitivities which are a best fit to S. From that set of three functions, an orthonormal basis is
found for the camera. Here is the computer code:
Rcam = RCohen(rgbSens) # 1
CamFit = Rcam*OrthoBasis # 2
GramSchmidt(CamFit, CamOmega) # 3
In step 1, rgbSens is an array whose columns are the three (or more) camera sensitivities.
RCohen() is a short routine to apply Cohen’s formula for projection matrix R, that is R =
A[ATA]!1AT, so that Rcam is the camera’s projection matrix, with A = rgbSens. In step 2,
OrthoBasis is S, and left-multiplying by Rcam finds CamFit, the best fit to S using camera
functions. The function call in step 3 applies Gram-Schmidt orthonormalization28 to find
CamOmega, an orthonormal basis for the camera functions. The Gram-Schmidt method operates
on the columns of CamFit in sequence so that the columns of CamOmega show their best-fit
ancestry. See App. C.

Example. Fig. 15 shows the 3 spectral sensitivities of a Nikon D1 camera29. These functions
become the columns of array rgbSens in step 1. Because of the invariance of projection matrix
R, it does not matter how the functions are normalized, or even if they are in sequence red,
green, blue. Then step 2 does 3 curve fits to the 3 vectors of the orthonormal basis, Fig. 16. For
example, look at the two middle curves, drawn as dash-dot. The thinner is T1, the human
achromatic function. Step 2 finds the best fit to T1 by a sum of the camera functions, the thicker
dash-dot curve. Functions T2, T3 are similarly fit by different combinations of camera functions.
The three curve-fits are independent operations in step 2, so the best-fit functions have no
necessary relationship to each other. Then in step 3 the Gram-Schmidt method yields the
camera’s orthonormal basis, Fig. 17, which can generate the camera’s LUM, ready for
comparison to the eye’s.
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In Fig. 18, the camera’s LUM, and related 3-dimensional curves, are seen projected in the v2-v1

plane, while Fig. 19 shows their projection into v2-v3. The smooth dashed curves are the human
Locus of Unit Monochromats, while solid black denotes the camera’s LUM. Green arrows
indicate the transition from the camera’s LUM to the best fit of the human LUM by a
combination of camera functions. Conceptually, the camera’s LUM describes it best, but the idea
of “fit first” is that the fit function (green arrowheads) is computed first, then the LUM (solid
curve). Consider the projection into v2-v1. The camera’s LUM (or fit function) tracks the human
LUM remarkably well from the longest wavelengths down to about 590 nm, in this projection.
Then a range of yellows are mapped too low in redness (v2) and also too low in whiteness (v1).
Then a range of yellow-green to greenish wavelengths, about 570 to 510 nm, are bunched
together, indicating a lack of red-green discrimination in this region. Those wavelengths are
somewhat better resolved in v2-v3, but that does not undo the loss of red-green discrimination for
a range of colors.

We could say that the camera approaches the Maxwell-Ives criterion for reds, but goes farther
astray in the green. The departures between camera and eye in Fig. 19 may be harder to
verbalize, but will affect pictures. This camera illustrates the method well, because of the way
that it approaches human-like color matching, but with specific shortcomings. Other examples
that I’ve worked out22 and put on the web site, show greater overall departure from the ideal.

A precise statement of the Maxwell-Ives criterion is somewhat abstract. In effect, the camera’s
sensors should span the same vector space as the eye’s. The Fit First method makes the abstract
idea into a comparison of two graphs. The rows of (CamFit-Orthobasis)are vectorial
error as a function of wavelength. The root-mean-square error amplitude would serve as a logical
figure of merit. Orthobasis, otherwise called S, embodies the goal and CamFit is the
camera’s best effort to meet the goal, to mimic the eye as Maxwell and Ives proposed.

Discussion
The notion of orthonormal color matching functions has come up in the past7-9,26,30,31, but each
time in a narrow context. This article and recent research1,22, have developed the idea that a
single orthonormal basis can have many uses. Jozef Cohen found that color stimuli have intrinsic
vector relationships, based on the fundamental metamers of the lights6. Emphasizing intuition
and graphs rather than algebra, I reviewed the ideas of prime colors, color rendering, and
projection matrix R, suggesting that they all relate to the overlap of receptor spectral
sensitivities.20 Then I made a discovery that ties R to the orthonormal basis, namely that the R
equals the unity operator.31 But that is almost the same as saying

R = SST . (14)
Now Eq. (14) is a handy theorem1, but in 2004, the related formula at the end of Ref. 31 was a
fresh insight. See Ref. 1, App. D.

In short, pieces of a puzzle began fitting together. I recalled a discussion with a teacher who did
not do color research, but mastered what was in the books. He said that “There is no diagram for
color mixing.”32 Isn’t that curious, one may ask, we have tristimulus vectors, but no diagrams? In
about 2003, a little toying with algebra and computer graphics suggested that the invariant space
could give pleasing diagrams for color mixing. A little more algebra, and discussions with
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Michael Brill and Sergey Bezryadin, made clear why diagrams in XYZ space are possible but
less helpful. That issue arises above under the rubric of “Color matching functions mapped to 3-
vectors.”

Conclusion. Six applications of vectorial color have been worked out. Analyzing them into
component vectors shows how white lights work, and how artificial lights often go wrong. The
method for camera analysis is suited for that exact topic: design and application of image
sensors. But the algebra and concepts apply naturally to related problems. A camera is a kind of
anomalous color vision observer. The fit first method could be applied to study anomalous
humans or to compare color vision across species, for example. If a camera has more than 3
sensor types (with linearly independent sensitivities), the basic formalism still applies. See App.
C.  Cohen’s ideas of vectors and invariant curves are more or less near the surface in each case.

Appendix A, The Blackbody Plane
A locus of blackbodies at constant radius in the invariant space and the vectors from the origin to
those points form a gently curving surface for temperatures above 2000 K. A blackbody (BB)
plane may be defined as the plane through the origin containing the color vectors of 3000 K and
10000 K blackbody. Call the unit vectors in those directions u3 and u10. Numerically,

u3 =   , u10  =    , (A1)
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with an angular separation of 40.2°. To serve as axes, we need two perpendicular unit vectors in
the plane of u3 and u10. The first can be the intersection of the BB plane and the v1 = 0 plane.
Points in the plane have the form  c3u3 + c10u10. At the intersection with the v1 = 0 plane, the first
element of that vector = 0, which implies 0.874c3 + 0.695c10 = 0. Set one of the c’s to unity,
solve for the other, then normalize to get u1 =  [0, 0.606, !0.796]T. The perpendicular vector is u2

= [0.875, 0.385, 0.293]T. If X is the matrix of axes,
X = [u1  u2]   , (A2)

then
Vbb = XTV    , (A3)

is a 2-vector ready to plot. Eq. (A3) finds the components of V in the u1 and u2 directions, and
discards the component normal to that plane. X is the orthonormal basis for the plane. 3-vector V
is the tristimulus vector of a paint chip under a certain light, for example, with Vbb its projection
into the plane. The plane is skew with respect to the usual axes of the invariant space, but u1 lies
in the v1 = 0 plane. It remains as an exercise for the engineer to use the projected vectors for
estimating the light or for some other purpose.

The choice of 3000 K and 10000 K as starting points is convenient, not critical. Appendix B will
make more clear how the blackbody locus and the chosen plane sit in the invariant color space.

Appendix B, Defining and Using a Chromaticity Diagram.
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In this article and the previous one, color stimuli are graphed as vectors in the invariant 3-space,
sometimes projected orthographically into a plane. The projected points or arrows are then 2-D
vectors. This appendix introduces a version of chromaticity based on the invariant color space.
Conceptually, color stimuli are mapped to 3-vectors from the origin, then each vector is
projected to a specified plane, and the intersection is chromaticity. Chromaticity is not a vector,
but a point in a plane that records a color vector’s direction, losing its amplitude.

It is convenient to choose the chromaticity plane parallel to the v2 axis and intersecting the other
axes at (0.2, 0, 0) and (0, 0, 0.2) . The equations of the plane are v1+v3 = 0.2, and of course v2 =
any. If a color vector is V = (v1, v2, v3), then the point where it meets the plane is tV, provided that
t(v1+v3) = 0.2, meaning that t = 0.2/(v1+v3) . Say that r = tV is the rescaled color vector. For
example the vectors of the LUM, when rescaled, would trace out a spectrum locus confined to
the plane, but still written as 3-vectors. To establish a coordinate system in the chromaticity
plane, we find unit vectors in two directions. The first is u1 = (0, 1, 0) and the second points from
(0.2, 0, 0) to (0, 0, 0.2), that is u2 = (2½/2, 0, !2½/2 ). If we say that c is a chromaticity 2-vector,
then

c = r . (B1)
0 1 0

2 2 0 2 21 2 1 2/ // /−










Boldface symbols for vectors are a reminder that the goal is a graph, not color vectors that can be
further manipulated.

Fig. B1 then shows the LUM projected into the chosen plane. The dots and + signs trace a
segment of the blackbody locus, with temperatures indicated. The + signs define the blackbody
plane of Appendix A, shown as a dashed line.

Appendix C: Practicalities of the Fit First Method.
As presented above, the Fit First Method is complete. The three steps generate the invariant
representation for the camera and compare it to the eye, as in Figs. 16-19. In this appendix, the
fit first idea is augmented with a bit of computer programming, and some algebra for camera
design, including the application of a four-color sensor. 

Computer Code. In the Gram-Schmidt method, vectors such as color matching functions are
added and subtracted to make an orthogonal set, often normalized in the process. The companion
article’s section on Orthonormal Functions shows the principle. The code below is in the O-
matrix language,33 similar to Matlab or even Basic. Matrix operations are part of the language.
The notation given.col(j) refers to the jth column of the array given. Spectral functions are
referred to a common wavelength domain, with uniform steps such as 1 nm.

function GramSchmidt(given, orthonorm) begin
# given and orthonorm should be matrices of the same dimensions,
# usually many rows and a few columns. The column vectors 
# within given will be orthonormalized to produce the column
# vectors of orthonorm.
last = coldim( given ) # coldim returns # of columns of the array
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aCol = double( given.col(1) ) # 1st column, forced to double precision
SumSq = aCol'*aCol # ' denotes transpose
NormFac = 1.0d0/sqrt(SumSq) # 1.0d0 is double-precision 1.0
orthonorm.col(1) = NormFac*aCol # 1st result column
for j = 2 to last begin

aCol = double( given.col(j) ) # again extract 1 column to work with
for i = 1 to (j-1) begin

dot = orthonorm.col(i)'*aCol
aCol = aCol - dot*orthonorm.col(i)
end # for i = 1 to (j-1)

SumSq = aCol'*aCol
NormFac = 1.0d0/sqrt(SumSq)
orthonorm.col(j) = NormFac*aCol # normalize the new vector
end # for j = 2 to last

end # end GramSchmidt()

The method hinges on the notion of projection. In the steps above, the expression
dot*orthonorm.col(i) is the projection of aCol on the already-created basis vector
orthonorm.col(i).

Camera Analysis. The columns of  Scam are linear combinations of the sensor functions S. One
set may be converted to the other. Conceptually,

S = [|red, |green, |blue,] . (C1)
One set may be transformed to the other. For example,

S =  Scam B , (C2)
where B is a 3×3 matrix. To find B, left-multiply by ST

cam :
ST

cam S = ST
cam Scam B . (C3)

By orthonormality, ST
cam Scam = I3×3 , implying that

B = ST
cam S . (C4)

Right-multiply Eq. (C2) by B!1 to find
Scam = SB!1 . (C5)

In application, a pixel receives a light spectrum |L,, so that
Scam

T|L, = (B!1)TST|L, . (C6)
Where 3-vector ST|L, is the signal from that pixel, and Scam

T|L, is that pixel as a 3-vector in the
camera’s invariant color space. As with any camera analysis, one does not know the detailed
spectrum |L,, so ST|L, and Scam

T|L, are explanatory names for 3-vectors, but I avoid defining
more variables.

Eq. (C2) through (C5) develop a general method for converting Scam to or from any other linear
combination of camera functions, denoted by S. Suppose that the columns of F are the best-fit
functions from the step 2 of the fit first method. Then

F =  Scam C , (C7)
where C is a 3×3 matrix. Then

C = ST
cam F . (C8)

Combine Eq. (C5) and (C7) to obtain
F = SB!1C   , (C9)

and then by the logic of Eq. (C6), a pixel signal ST|L, in the sensor may be converted to a pixel
color FT|L, in the best-fit color space. To summarize, matrix S comprises the defining camera
functions, while F and S are results from the fit first method. From those non-square matrices
the 3×3 matrix B!1C is calculated for possible use in a camera.
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4-band Sensor. There are camera sensors—or at least a data sheet34—with 4 spectral
sensitivities rather than 3. In the hope that a linear combination of 4 spectral functions can
approach the Maxwell-Ives ideal better than 3 functions, one may sketch out a 3-color camera
using the 4-color sensor. The fit first method applies directly, but the algebra then varies a little.
To start from the beginning, the columns of S are the camera basis, also called rgbSens above.
By the specified names,

S = [|yellow, |cyan, |magenta, |green,] , (C10)
but the fit first step ignores the names and sequence. The camera’s projection matrix is then

Rcam = S[STS]!1ST . (C11)
Eq. (C11) applies Cohen’s formula, step 1 above, valid so long as the columns of S are linearly
independent. Step 2 finds the projection of the human basis S (3 vectors) into the 4-space of S .
The practical meaning is 3 least-squares curve fits, no difficulty. Let F be the fit by the camera
functions to S . Then,

F = Rcam S . (C12)
For step 3, the camera’s orthonormalized basis Scam will have only 3 vectors, derived from F by
Gram-Schmidt. The 3 steps allow the human S to be compared to Scam and F , graphically or
numerically, applying the Maxwell-Ives criterion.

Again one requires a formula to find Scam from S, and by extension to relate signals from a pixel
to the color space of the camera’s orthonormalized basis. That is, we need matrix D such that

Scam = SD . (C13)
Assuming that the columns of S are linearly independent, the Moore-Penrose pseudoinverse of S
is35

S+ = (STS)!1ST . (C14)
Then

D = (STS)!1STScam . (C15)
From that point, the previous logic applies, but in Eq. (C9), replace B!1 by D. In Eq. (C14), if the
columns of S are orthonormal, then STS is an identity matrix and the pseudoinverse of S equals
its transpose. With this insight, where ST

cam appears in Eq. (C3), it is in fact the pseudoinverse of
Scam .
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Appendix D: Fit First Method in Relation to Other Work
Given the invariance of the LUM for each observer or camera, the fit first method applies the
Maxwell-Ives criterion directly, and need not be justified by comparison to other algorithms.
Still, a comparison to earlier work may be of interest.

Early TV Development. Sproson’s book36 derives from his experience during the development
of color television, in 1950-1977. Color matching functions, as in Fig. 1a of the previous article,
are determined by human color mixing, plus the choice of 3 primary wavelengths. A television
screen has 3 primaries, so it can simulate an original scene for a human if the camera’s
sensitivities are those that a human would have in a color-matching experiment with those
primaries. Sproson uses graphs similar to that Fig. 1a, but the detailed reasoning takes into
account the system white point. A limitation of camera design is expressed by noting that the
camera’s sensitivity cannot have the lobes of negative sensitivity. Later, Sproson acknowledges
that a linear transformation, referred to as “matrixing,” can generate the negative lobes. Thus, his
methods develop a sensor design from the Maxwell-Ives principle. He also uses a figure of merit
based on mean departure from the ideal.

Neugebauer Quality Factor. In a preliminary step, Neugebauer’s 1956 “quality factor”
calculation26 derives orthonormal CMFs U1, U2, U3 , applying the Gram-Schmidt algorithm to
{y6, x6, z6} in that order. If |f, is one camera sensitivity, then the orthogonal function expansion is

   . (D1)f U U fj
j

j* =










=
∑
1

3

The summation in parentheses is in fact Matrix R, but the RHS as a whole is the orthonormal
function expansion that Neugebauer used. Then the sum-squared error of the approximation is

) = +f*f, ! +f**f*, =   , (D2)f f U fj
j

−
=
∑
1

3 2

and the quality factor is q = 1 ! )/+f*f, . (Appendix D of the companion article may aid
understanding of Eq. (D2) and Neugebauer’s reasoning.)

Result q is then calculated separately for each camera sensitivity |fi,. It would be possible to
graph *f, and *f*, together. A limitation in the Neugebauer or Sproson work is that the camera
functions |fi, are not orthogonal, and one relies on the camera designer’s practical sense to ensure
that the 3 functions are linearly independent. Extending that thought, one could argue for
orthonormalizing the camera functions just as the CMFs were orthonormalized. The idea is
valid, but would lead to arbitrary dissimilar orthonormal sets, an awkward situation. By contrast,
the fit first method uses the ideas of the invariant LUM, projection matrix R, and the specific
orthonormal basis, as previously developed. The fit that is done in the fit first method is the
reverse of Neugebauer’s, with the human color functions approximated by the camera functions.
Keeping S as the ideal lends intuitive sense to the graphical comparison. Orthonormal camera
functions are indeed computed.

Because the already normalized vectors of S are taken as the starting point, the scale of the
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stated camera functions does not affect the fit first results. Neugebauer achieves a similar goal
when he divides ) by +f*f, . Neugebauer finds the quality factor of the spectrum to be

q(8) = [U1(8)2 + U2(8)2 + U3(8)2]*8 , (D3)

where *8 is bandwidth. Letting *8 = 1nm, this function is the distance to points on the LUM,
equal to the diagonal of projection Matrix R.
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Figure Captions
Applications of Vectorial Color

James A. Worthey

Fig. 1. The functions of the orthonormal basis.

Fig. 2. Cone stimuli, red versus green. Each dot represents a paint chip lit by D65.

Fig. 3. Dots are the same paint chips under D65. Stimuli are now expressed as v2 versus v1 based
on Eq. (3).

Fig. 4. Dots are the same paint chips under D65. Stimuli are now expressed as X versus Y, in the
usual CIE system.

Fig. 5. Color matching functions as directions in color space. The functions T1 , T2 , and T3 plot
to the v1, v2, v3 axes, which are achromatic (to the right, equal to y6),  red-green (upward) , and
blue-yellow (near to blue cones).

Fig. 6. Each arrow shows the stimuli from one color chip under blackbody lights, 5000 K at the
tail, then 6500 K. Neutral chip N9.5 is a proxy for the lights, which have equal illuminance.
Tristimulus vectors are projected into the v1-v2 plane.

Fig. 7. Similar to Fig. 6, but now v3 is plotted versus v1.

Fig. 8. Similar to Figs. 6 and 7, but now v2 is plotted versus v3. Labeled circles are a blackbody
locus at v1 = constant.

Fig. 9. The same chips are plotted in the same color space as Figs. 6-8. Now the stimuli have
been projected into a blackbody plane, as defined in the text. Again, a blackbody locus is
indicated.

Fig. 10. Two metameric white lights, JMW daylight and mercury vapor, are compared in their
vectorial composition. The vectors are projected into v2 versus v1. The mercury vapor light takes
a shortcut from blue to white, with less of a swing towards green (downward) and back towards
red.

Fig. 11. The same color chips are plotted as in Figs 6-9, but now the lighting transition is from
daylight to high-pressure mercury vapor, the lights compared in Fig. 10. This projection shows
the loss of red-green contrast.

Fig. 12. Protanopic color defect considered as the absence of red receptors. The heavy solid line
is the protanope’s Locus of Unit Monochromats (LUM). The thinner solid line shows the
vectorial composition of the equal energy light. The dashed line is a locus of neutrals—greys and
whites as seen by this color defective observer.
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Fig. 13. Similar to Fig. 12, but now the subject is a deuteranope, considered to lack green
receptors.

Fig. 14. Similar to Fig. 12, but now the subject is a tritanope, considered to lack blue receptors.

Fig. 15. The 3 spectral sensitivities of a Nikon D1 camera, as reported by DiCarlo, Montgomery,
and Trovinger29.

Fig. 16. Best fit to orthonormal basis S using the camera functions of Fig. 15. The thin curves
are the human basis, while the thicker ones are the best fit. Dash-dot = achromatic, long dashes =
red-green, short dashes = blue-yellow.

Fig. 17. Thinner curves are again S; the thicker ones are the camera's orthonormal basis.

Fig. 18. Human and camera functions projected into v2-v1 plane. The dashed curve is the human
LUM, meaning a parametric plot of S. The solid curve is the camera’s LUM. The heads of the
short green arrows indicated the best fit of camera functions to the human LUM.

Fig. 19. Similar to Fig. 18, but the 3-dimensional curves are now projected into the v2-v3 plane.

Fig. B1. A version of chromaticity based on the invariant color space. Dashes and + signs trace a
segment of the blackbody locus, with temperatures as indicated. The + signs define the
blackbody plane of App. A, indicated as a dashed line.
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