Figure 1. Loss of red-green contrast under 2-bands light. Initial light = $L_1 = 4002$ K blackbody radiation. Second light = L_2 = a 2-bands light, with its radiant power in narrow bands at 446 nm (25.2% of power) and 574 nm (74.8% of power), indicated by diamond shapes, \Diamond, on the spectrum locus. Both lights have chromaticity $(x, y) = (0.3804, 0.3767)$, indicated by \ast. Each arrow corresponds to one of the 64 Munsell reflectances measured by Vrhel et al14. The arrow tail is the chromaticity of a Munsell paper under L_1, while the arrow head is the chromaticity of that paper under L_2.
Figure 2. Spectra of 4 lights with equal luminance and approximately equal chromaticity. Thin solid line = cool white fluorescent, \((x, y) = (0.3825, 0.3850)\). Short dashes = 4002 K blackbody, \((0.3804, 0.3767)\). Longer dashes = JMW Daylight, \((0.3825, 0.3849)\). Thicker solid line shows a commercial filtered tungsten-halogen lamp, \((0.3850, 0.3833)\).
Figure 3. Light C → 3-bands light. As in Figure 1, each arrow shows the chromaticity shift of a Munsell paper. $L_1 =$ Illuminant C. $L_2 =$ a light of 3 narrow bands, using the 3 wavelengths from the quantitative retinex experiment, 450, 530, and 630 nm. Again the diamond shapes, ◊, locate the narrow bands along the spectrum locus. Both light sources have chromaticity (0.3101, 0.3162), marked by +.
Figure 4. In the 2-dimensional chromaticity diagram, a subset of the data from the actual quantitative retinex experiment12. The tail of each solid arrow is the chromaticity of a paper under the light of the so-called “gray experiment.” The head of that arrow is the chromaticity of that same paper under the light of the “yellow experiment” (a bluish light). A dotted arrow reaches from that point to a point representing, in effect, the \textit{perceived} chromaticity of that paper reported by a subject.
Figure 5. Triangles showing the 2-dimensional gamuts for mixtures of 3 primaries. The solid line corresponds to the NTSC video phosphors. The longer dashes are based on the 3 wavelengths from the quantitative retinex experiment, 450, 530, and 630 nm. The triangle of shorter dashes is based on Thornton’s prime colors, 450, 540, 610 nm.
Figure 6. A version of human cone sensitivities, generated as linear combinations of the CIE 2° color matching functions. Solid = red-sensitive cones; short dashes = green-sensitive cones; long dashes = blue-sensitive cones.
Figure 7. A set of opponent-color primaries, formed by linear combinations of the CIE 2° color matching functions. Solid line = \tilde{a} = the non-opponent function, proportional to $\tilde{y}(\lambda)$ of the 2° observer. Short dashes = \tilde{r} = red-green opponent function. Longer dashes = \tilde{d} = blue-yellow opponent function.
Figure 8. Reflectances of 4 yellow objects, from data of Vrhel et al. Thin line = lemon skin. Shorter dashes = Munsell paper 10Y 5/6. Longer dashes = Munsell paper, 10Y 8/10. Thick line = yellow raincoat.
Figure 9. Four lights successively. Now only 36 Munsell papers are used, so that the arrows won’t pile up. Each chain of arrows tracks the chromaticity of a paper under 4 lights in succession. $L_1 =$ cool white fluorescent, $(x, y) = (0.3786, 0.3906)$. $L_2 =$ JMW daylight, $(x, y) = (0.3787, 0.3905)$. $L_3 =$ Commercial Prime Color light, nominal 4100 K color temperature, $(x, y) = (0.3749, 0.3890)$. $L_4 =$ idealized Prime Color light comprising 3 narrow bands at 450, 540, and 610 nm; $(x, y) = (0.3786, 0.3906)$. The narrow bands are again indicated by diamond shapes.
Figure 10. Spectral power distributions of the 4 lights used in Figure 9. Thin solid line = cool white fluorescent. Short dashes = JMW daylight. Longer dashes = commercial Prime Color light. Three narrow lines = idealized Prime Color. The lights are equated for illuminance, except that the 3 narrow lines have been scaled down by a factor of 30, in order to fit them on the graph.
Figure 11. Diagonal of Matrix R, and its square root. The lower solid curve is the diagonal of Matrix R, and the upper dashed curve is the square root.
Figure 12. Spectral transmittance of neodymium glass, at 1.2 mm thickness, and successive concentrations of 0.0%, 1.7%, 4.2%, and 6.3% Nd₂O₃. For the 2900 K light, the luminous transmittances are \(Y = 91.8\% \), 81.9\%, 71.7\%, and 65.7\%.
Figure 13. Chromaticity shifts with increasing concentration of Nd$_2$O$_3$ in a 1.2 mm glass layer over a 2900 K blackbody. The filter transmittances are as shown in the previous figure. The chain of slightly thicker arrows shows the shifting chromaticity of the light itself.