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Color Rendering: a Calculation That Estimates Colorimetric Shifts
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Abstract
Lights vary in their ability to render object spectral reflectances into color contrasts. When a
light L1 is replaced by another L2, even if L2 matches L1 in chromaticity, systematic color shifts
may occur, including a loss or gain of chromatic color. For instance, many familiar lights, when
compared to daylight, dull red and green objects, rendering them closer to gray. An opponent
colors method is appropriate to this discussion because it brings to the surface the notion of
chromatic color, meaning actual departure from white or gray. In this article, an opponent-colors
analysis leads to a matrix formulation that serves two purposes. The effects of replacing L1 by
L2 are estimated with a 3x3 “rendering matrix” P. Given an object’s tristimulus vector under L1,
the method makes an approximate prediction of the new tristimulus vector under L2. Thanks to
the opponent formulation, matrix element P22 quantifies the gain or loss of redness and
greenness, while P33 expresses gain or loss of blueness and yellowness. These in fact are major
effects, so the method is both quantitative and explanatory.
Figures are in a separate file:  http://www.jimworthey.com/RndrCalcFigs.pdf
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INTRODUCTION

Lights vary in their ability to render object properties into black-white and color contrasts1. A
previous article1 showed the systematic nature of color rendering effects that are likely to arise.
Owing to the spectral overlap of red and green cone sensitivities, a light can be
achromatic—stimulating all three cone systems—if it has power in only two narrow bands, one
in the blue and one in the yellow. This makes a white light but renders reds and greens as black
or brown. Familiar lights, such as Cool White fluorescent, when compared to a broad-band light
such as daylight, dull reds and greens, taking a stride in the direction of the two-bands example.
The need for actual red and green power in a light—not just a narrow band in the yellow—is
expressed by Thornton’s Prime Color analysis, by the diagonal of Cohen’s Matrix R, or by an
opponent-colors approach1,2.

The previous article1 is intended as an introduction to this one, which presents an explicit
method. Jozef Cohen found that the smoothness of object reflectance spectra could be expressed
by writing them as linear combinations of a few basis functions3. Extending that idea, he found
that color matching functions themselves could be considered basis functions for any colored
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light,4 combining to give the “fundamental metamer,” and leading on to Matrix R1,4. Sherman
Lee Guth and others have created simple quantitative opponent colors models5. (See Appendix
A.) In what follows, these ideas are merged (and slightly scrambled), using orthogonal function
and matrix methods, distilling everything into a single equation with no adjustable parameters,
Eq. (13). This formula gives an approximate prediction of object-color shifts under a change of
lights, and in the process quantifies any overall effects on color contrasts. Prime color lights1,6

and other inventions provide revealing examples.

Goal
Suppose that a room contains objects of various colors. The lighting is changed from an initial
light L1 to a second light L2:

L1÷L2  . (1)

In general, all the objects change in tristimulus values. If there were only one colored surface, of
spectral reflectance s(8), it would be a standard calculation to find the tristimulus values under L1

and under L2, and one could find the vector difference between the tristimulus vectors,
everything calculated exactly. The vector difference is sometimes called the colorimetric shift.
That is colorimetry, but it is not color rendering. A color-rendering method, in one way or
another, should describe the overall effect of the lighting substitution.

The prototypical color rendering scenario is assumed to be a transition between two
lights of the same chromaticity. To this extent, the problem at hand is the same one addressed by
the CIE's CRI method13. However, this article treats color rendering as scientifically interesting,
while the CRI method is based on hidden assumptions and tends to cut off discussion.

The method to be developed will model the colorimetric shifts of all objects under a
lighting transition L1÷L2 . In order to confront the issue of spectral overlap between red and
green receptor sensitivities, surface tristimulus vectors will be expressed in an opponent color
system. A square symmetrical matrix P will be derived such that if one knows a surface’s
tristimulus vector under L1, Q(L1), the matrix product PQ(L1) will be a useful estimate of the
tristimulus vector Q(L2) after the lighting change. While any linear model of surfaces could lead
to an illuminant matrix, the particular opponent formulation will allow the individual matrix
elements to have intuitive meaning. For example, the element P22 will be the gain for redness and
greenness. In this way an orderly mathematical method will rediscover what was found
empirically in the previous article: reds and greens are in greatest jeopardy from lights of poor
color rendering.

The Plan
Let it not be said that I have buried my main ideas deep in the article. Omitting all nuance, here
is the plan. Suppose the CIE 2° observer sees a surface reflectance s(8) under a light L1(8). The
tristimulus values for surface s(8) are given by sums of the form Ex6 L1s, where the sum is over 8.
So far, no news. Recall that any 3 linear combinations of the members of {x6, y6, z6} are a new set
of color matching functions {q61, q62, q63} that predict the same matches, so long as the
transformation has determinant … 0. Now arrange such a set of color matching functions that are
orthonormal, Eq6iq6j = *ij. Here *ij is the Kronecker delta, equal to one if i=j, and equal to zero
otherwise; the sum is over 8. This is in fact easy to do, and if we start by making q61 = y6/(Ey62)½,
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proportional to the usual luminance sensitivity y6, then the set of q6i’s can be made to look like
opponent-color functions, though they will not be identical to any well-known opponent colors
model. This set of color-matching functions is graphed in Fig. 1.

The orthonormal feature makes it easy to approximate other functions of wavelength by linear
combinations of q61, q62, q63. At this point, let |L1, be normalized thus:

L1 ² L1(+q61|q61,/+q61|L1 q61,) . (2)

While Eq. (2) is somewhat arbitrary, a rationale will be given later. In this new color system, the
tristimulus values, Qi, can be written as

  , (3)
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where the brackets, +|, indicate inner products—those sums over 8. Applying the orthonormal
property, we can approximate s by a truncated series:

|s, = |q61,+q61|s, + |q62,+q62|s, +|q63,+q63|s, + ... . (4)

This leads to an approximate version of Eq. (3):
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If 3 inner products produce an exact answer in Eq. (3), why is it better to get an approximate
answer using 12 inner products in Eq. (5)? Because Eq. (3) is colorimetry, but Eq. (5) is color
rendering! The effects of illuminant L1 are isolated in the square matrix, independent of the
particular surface s.

The column matrix on the right summarizes the spectral reflectance s by three numbers which
are in fact the tristimulus values of s under the equal-energy illuminant. The column matrix on
the left contains the (approximate) tristimulus values of s under L1. Therefore, the square matrix
is a transformation that takes as input the tristimulus values of any surface under the equal-
energy light and estimates the new tristimulus values under L1. In the introductory article1 were
many little arrows within chromaticity diagrams, each representing a particular object color, first
under one light, and then under another. Eq. (5) accepts any tristimulus vector as a starting point
(arrow tail) and estimates the new tristimulus value (arrowhead). This is a powerful form of
approximate prediction, similar to things done in the study of computer graphics and machine
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vision. (Yes, the results can be converted to [X Y Z]'.)

Now consider what the tristimulus vector [Q1 Q2 Q3]' means in an opponent-color system. The
first element, Q1, is the luminous reflectance of |s, under |L1,, or if |L1, had not been normalized,
Q1 would be proportional to luminance. The second element, Q2, represents redness or greenness
of the lighted surface |s,. Q2>0 represents redness while Q2<0 indicates greenness. Similarly,
Q3>0 denotes blueness, while Q3<0 denotes yellowness. A white object, for instance, will have
Q1 equal to some nonzero number, such as 0.90, but Q2 . 0 and Q3 . 0. To the extent that Q2 and
Q3 differ from zero, they represent actual signals, a non-neutral chromaticity. Because |L1, was
normalized, Eq. (2), Q2 and Q3 are chromaticity coordinates, already adjusted for the intensity of
the light.

Meanings of matrix elements
Since the tristimulus values represent signals, the elements of the square matrix are gains. The
diagonal elements are the easiest to understand. The first diagonal element predicts luminous
reflectance under L1 as a multiple of luminous reflectance under the equal energy illuminant, E.
The second diagonal element—the center element of the square matrix—predicts the redness or
greenness of the surface as a multiple of its value under E. Recall that in the introductory article
some lighting transitions systematically made reds redder and greens greener, or the reverse.
This second diagonal element, if it differs from unity, predicts such a systematic effect in the
transition from E to L1. The third diagonal element is the gain for blueness or yellowness.

For an example, suppose that  L1 = E. That is to say, the test light is the equal energy light.
Substituting the number 1.0 for L1 in Eq. (5) and applying the orthonormality condition, +q6i|q6j, =
*ij, causes the square matrix to become an identity matrix. In other words, the tristimulus vector
of s under E is equal to itself, a check on the method’s logic.

Eq. (5) brings the color-rendering problem into the orderly realm of matrices and linear algebra.
From this starting point, many steps can be taken. The transformation itself can be transformed,
so that the tristimulus vectors refer to some other color system and not the orthonormalized one.
A color-rendering matrix can be computed for any starting light L1 and ending light L2. As
further inferences are drawn, it may begin to appear that whole method is extremely
complicated. In fact, the central idea is contained in Eq. (5) and its interpretation. Further
manipulations are just algebra. The ability to solve new problems should be seen as a benefit and
not as “complication.”

Eqs. (4) and (5) express a standard method in applied mathematics. The specialized features are
these:
1. Object spectral reflectances are approximated by a linear combination of color-matching

functions, rather than some other set of basis functions.
2. The color-matching functions are based on the CIE 2° observer, but are linear

combinations of {x6, y6, z6} such that:
a. The cmf’s are orthonormal, +q6i|q6j, = *ij.
b. The first cmf is essentially the familiar luminance sensitivity, +y6|, but normalized

so that +q61|q61, = 1.0, in deference to orthonormality, item a.
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c. The second and third cmf’s are opponent functions, making the 3 of them into an
opponent set, similar to well-known opponent models.

3. The tristimulus values in the opponent scheme have more meaning than would {X, Y, Z}.
In particular, Q2 and Q3 are “signals” that are small or zero for a neutral object, while one
or both departs further from zero for a more saturated color.

4. The square matrix carries all the remaining information about |L1,, including useful
color-rendering information. Because it transforms one set of color signals into another,
the 9 matrix elements can be thought of as gains. Each of those gains has an intuitive
meaning, though the diagonal elements are the easiest to explain.

5. In particular, the second diagonal element is the direct gain for redness or greenness. It
quantifies the quality of revealing or suppressing reds and greens, of which so much was
said in the introductory article1.

6. In the plan as just stated, the matrix describes a lighting transition L0÷L1, where L0 is the
equal energy light. As the details unfold below, the method will be extended to allow any
broad band light L0 to be the initial light.

7. Though the CIE 2° observer was used for concreteness, the same schema is easily applied
with the CIE 10° observer, or another  standard observer that may be developed.

Background: Smoothness Constraint
Nature imposes a smoothness constraint on object colors: reflectances of most solids change
slowly with wavelength. This can be expressed as a limit on the slope )s/)8, where s is spectral
reflectance7, but a more popular method is to assume that most spectral reflectances can be
expressed as linear combinations of a small set of basis functions3. That is to say, if |si, is the
spectral reflectance of a particular object, then

, (6)s c bi ij j
j

k

= +
=
∑
1

...

where k is a fairly small number such as 3, 4, or 5, and the basis functions {|bj,, j=1, k} are a
fixed set of linearly independent functions common to all objects under discussion, however
numerous the objects. The notation “+...” means that the sum of terms only approximates |si,,
and the fit could be improved if k were increased. Eq. (6) is sometimes said to express |si, by a
linear model8,9,10.

Vrhel, Gershon and Iwan cite several theoretical articles that have depended on Eq. (6) with k
small10. Their goal was to test this hypothesis by measuring 354 spectral reflectances, and
performing a principal components analysis on the entire collection of spectral functions to
derive the mean |b0, and 7 basis functions |bj,.  This implies a slightly different form of the linear
model, shared by other famous principal components models11,12:

  . (7)s b c bi j j
j

k

= + +
=
∑0
1

...

For their data, Vrhel et al. found this approximation to be a mediocre one for k = 3, but much
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better when k = 4. When the fit is based on principal components, Eq. (7), the number of vectors
used is k+1, or one more than the “number of basis functions” to which Vrhel et al. refer.

The CIE’s color rendering document13 does not mention spectral smoothness of object
reflectances or linear models or anything of the sort. Among the hidden assumptions of the
calculation resides an implicit linear model, since the universe of objects is represented by 8
Munsell colors. If the Munsell colors are spectrally dependent as Cohen found3, then the implicit
model has 3 basis vectors; otherwise it has at most 8 basis vectors.

In this article, I approximate object reflectances by a model in the form of Eq. (6), with k = 3.
This excludes object color metamerism from the discussion. Increasing k would permit
metameric object colors, with some plan needed to supply the additional basis functions.
Appendix B explains the notation14 used to keep track of orthogonal functions and inner
products2,15,16.

DETAILED THEORY WITH PIVOTAL LIGHT

As a starting point I take the simple opponent-colors model explained in Appendix A. Within
this model, receptor sensitivities are defined, {+r6|, +g6|, +b6|}, and then opponent-color
sensitivities, {+a6|, + t6|, +d6|}. Each of these sets is a set of three color matching functions,
equivalent to the CIE 2° observer functions, {+x6|, +y6|, +z6|}, but with some additional meaning.

I now wish to approximate all object reflectances by linear combinations of 3 basis functions:

. (8)s c qi ij j
j

= +
=
∑
1

3

...

This is Eq. (6) with k=3 and basis functions |q6j,, which are created as follows:
1. Begin with the opponent sensitivities, {|a6,, | t6,, |d6,}.
2. Choose a pivotal light source L0. It can be one of the lights to be compared. Because of

the way the pivotal light enters later steps, it is desirable that it be a relatively broad-band
light, such as JMW daylight11, blackbody radiation, or the equal energy light E, not a
peculiar source like low-pressure sodium.

3. Anticipating the next step, normalize L0 so that it does not affect the normalization of |a6,.
That is, L0 ² L0(+a6|a6,/+a6|L0 a6,), Eq. (2).

4. The Gram-Schmidt process operates on functions in a specified sequence, and the first
function is merely normalized, to become the first member of the orthonormalized set.
The chosen sequence is |a6,, | t6,, |d6,. Since |a6,, called achromatic sensitivity, is the usual
light-meter sensitivity |y6, times a constant, the first member of the orthonormal set will
still be |y6, times a constant. Now perform the Gram-Schmidt orthonormalization, but
when an inner product is taken within the method, include L0 as a weighting function. 

5. The resulting orthonormal set may be called {|q61,, |q62,, |q63,}.

Because the weighting function was used within the Gram-Schmidt process, the orthonormality
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condition is now

+q6i|L0q6j, = *ij  . (9)

See Appendix C for a review of Gram-Schmidt orthonormalization as it applies here. Because a
light L0 multiplies a color matching function in Eq. (9), this method is similar to that of Keusen40.

Now Eq. (3) was the familiar formula for the tristimulus vector, and it still is:
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That is to say, the weighting factor L0(8) does not appear spontaneously. In the summary of the
plan, Eq. (5) was not explained. The more general version, with the weighting function, will now
be derived. Let Eq. (8) be multiplied on the left by +q6mL0| :
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By the orthonormality condition (9), the inner product on the right is *mj, and only the m term in
the sum is nonzero, so we find

cim = +q6mL0|si,  . (11)

This is the formula for each of the coefficients cij in Eq. (10). Considering the rth row in Eq. (3),
and combining that with (8) and (11),
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Returning to matrix notation, 
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This is the central result, a more general version of Eq. (5). Suppose, for example, that L0 = D65,
the standard light representing 6500 K daylight. Then the column matrix on the right contains
the tristimulus values of |si, under D65. Three numbers serve as a proxy for the complete spectral
reflectance function, and those numbers contain the same information that is routinely used in
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industrial color discussions. It is not in the usual format [X Y Z]', but can easily be converted to
or from that form. The conversion would be exact, except for some tiny roundoff error.

Referring to Eq. (13), let the tristimulus vector on the left be called Q(z, L1, si, est), where z
stands for “orthonormal basis,” and “est” stands for “estimated.” Since 4 modifiers are unwieldy,
we can omit any that can be inferred from context. The vector on the right is Q(z, L0, si). The
square matrix can be called P(z, L0÷L1):

P(z, L0÷L1) =   . (14)

q L q q L q q L q
q L q q L q q L q
q L q q L q q L q

1 1 1 1 1 2 1 1 3

2 1 1 2 1 2 2 1 3

3 1 1 3 1 2 3 1 3

















That is, P is the color-rendering matrix. The boldface ‘P’ may be thought of as an uppercase
Rho, for Rendering. In this notation,

Q(z, L1, si, est) = P(z, L0÷L1)Q(z, L0, si)  . (15)

Meanings of Matrix Elements
If L1 = L0, applying the orthonormality condition of Eq. (9) in Eq. (14) gives P = I, the identity
matrix. To emphasize:

For do-nothing transition, L0÷L0, P =  . (16)

1 0 0
0 1 0
0 0 1

















As L1 … L0 causes an element to depart from its do-nothing value of 1 or 0, this expresses some
systematic effect. Recall the meanings of the tristimulus vector [Q1 Q2 Q3]':

Q1 = luminous reflectance, also known as Y, or lightness.
Q2 = redness if positive, or greenness if negative.
Q3 = blueness if positive, or yellowness if negative.

With this in mind, the 9 matrix elements carry old into new as follows:
P11 = lightness into lightness
P22 = red into red or green into green
P33 = blue into blue or yellow into yellow
P12 = red or green into lightness
P13 = blue or yellow into lightness
P21 = lightness into red or green
P23 = blue or yellow into red or green
P31 = lightness into blue or yellow
P32 = red or green into blue or yellow
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Simplest to discuss are the diagonal elements. The first, P11, represents mapping of lightness into
lightness, and if L0 and L1 were not normalized, this value could be a measure of how the
transition L0÷L1 affects lightness. If L1 is in fact normalized as L0 was, to hold +a6|L1 a6, = 1, then
P11 = 1. The next diagonal element, P22, tells how L0÷L1 affects reds and greens. If P22<1, reds
and greens tend to be duller and less saturated, for instance. P33 acts similarly on blues and
yellows. The off-diagonal elements express the mapping of one hue into another as detailed
above. For instance, P21 represents a light’s ability to translate lightness into redness.

Inspection of Eq. (14) shows that P is always symmetrical, so that P21 = P12, etc. This symmetry
implies that when P21<0, for instance, light-colored objects become more greenish, and greenish
objects become lighter.  While all mathematical variables have precise meanings, the color
names red, green, etc. are used loosely to refer to the opponent dimensions Q2 and Q3, which are
not aligned with pure or unique hues.

Detailed Examples
Fig. 2 illustrates the working of the model for the transition from JMW daylight11 to Cool White
fluorescent light. The lights have the same chromaticity, shown in the figure by +. Forcing this
match puts the “daylight” out of the normal band11 by +0.0025 units in x, a tiny deviation. The
36 arrow tails are chromaticities for a subset of the Munsell reflectances measured by Vrhel et
al.10, and calculated in the daylight condition by the normal detailed formula. Likewise, the
normal formula gives the heads of the solid arrows under Cool White. The heads of the dashed
arrows are calculated from the arrow tails by the linear approximation of Eq. (13). 

In this case, the rendering matrix is

P(z, JMW Daylight÷Cool White) =   . (17)

1 0 0881 0 0158
0 0881 0 7565 0 0077
0 0158 0 0077 10103

. .
. . .
. . .

−

−

















This is the transformation between tristimulus vectors in the orthonormal basis. For the purpose
of creating Fig. 2, it was converted to a transformation for tristimulus vectors expressed as
[X Y Z]', as explained in Appendix D. Similar to examples in the introductory article, Fig. 2
shows reds losing redness and greens losing greenness in this lighting change. The linear
approximation (dashed arrows) is more accurate for some papers than for others, but in this
example it expresses well the overall loss of red and green.

This, of course, was the goal: to express in numbers the main effects of a light such as Cool
White fluorescent. In P(z, Daylight÷Cool White), Eq. (17), the matrix element that differs most
from its do-nothing value is P22 = 0.7565, the gain for redness or greenness.

In Fig. 3, the lights and explanation are the same, except that the example colors are the 8
Munsell reflectances tabulated in the Color Rendering Index method13. Again, the linear
approximation is reasonable in the chromaticity shifts that it predicts. The small set of
desaturated colors scarcely displays the systematic effects seen when purer reds and greens are
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considered. The CRI method13 makes no reference to the systematic nature of color rendering.
Even if the method were augmented to call for a graphical display akin to the solid arrows in Fig.
3, the reliance on 8 pastel chips would obscure the facts.

In Fig. 4, one would assume that the two lights compared both offer good color rendering. The
transition is from 10,000 K daylight, to a warmer  daylight phase, 4800 K. Again, solid arrows
show the exact colorimetric shift, while dashed arrows are found from the linear approximation,
specifically

P(z, JMW 10,000÷JMW 4800)  =   . (18)

1 01333 0 0074
01333 11080 0 0820
0 0074 0 0820 05277

. .
. . .
. . .

−

−

















Math mavens will see that there is an implicit constancy model here. To the extent that a lighting
shift can be modeled by a matrix, constancy can be achieved by inverting the matrix. This is not
a new idea, but the linkage of the rendering and constancy discussions may be novel.

Diverse collection of lights
Eq. (13) quantifies the rendering of light L1 by comparison to a starting light L0. Light L0 was
called the pivotal light because, in some cases, one might wish to compare a set of lights {L1, L2,
L3, ...}, each in turn, to the same initial light L0. In Figs. 5 and 6, numerous lights are compared
to the Equal Energy Light (L0 = 1 for all 8). In both cases, the abscissa is 106/(color temperature)
as calculated for each light. The color rendering matrix P(z, Equal Energy÷Lj) was calculated
for each light Lj. From each such matrix, P22 is graphed in Fig. 5 and P33 is graphed in Fig. 6.

Blackbody spectra were calculated for 22 temperatures, leading to the values plotted as solid
curves. For JMW daylight11, there is a permitted band about a mean locus in (x, y). The +
symbols denote four daylights on the mean locus. (In Fig. 5, one + is lost under a •.) The
greenish limit is traced by diamonds, ", and the purplish limit by circles, . Curves could be
drawn to connect these daylight points, but they are left out to reduce clutter. The daylight points
appear in brown. Color is used redundantly with some shapes, to help sets of related points stand
out.  The pivotal light, Equal Energy, gives a rendering matrix that is the 3×3 identity, meaning
P22 = P33 = 1.0; the correlated color temperature happens to be 5456 K. These points are plotted
with a filled square, , and the designation EQEN.

The bold triangles, ª, 2BDS, are a 2-bands light matched in chromaticity to 4002 K blackbody.
The colorimetric effects of this peculiar light were mapped in Fig. 1 of the prior article1. Based
on logic and example calculations, it was asserted that this light would lose reds and greens. The
matrix theory then should yield P22 small or zero. The rendering matrix now is
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P(z, Equal Energy ÷ 2-bands)  =   , (19)

1 03025 0 0155
03025 0 0953 0 0558
0 0155 0 0558 0 6967

. .
. . .
. . .

−
−

− −

















so that P22 .0.1 . This value is not zero only because the two narrow bands (446 nm, 574 nm) do
not align with the intrinsic blue-yellow direction in the particular color space. For confirmation,
the determinant of this matrix is det(P) = 9.576×10!18, or essentially zero. This shows that the
transformation cannot be inverted, consistent with all tristimulus vectors being collapsed into a
plane.

Other symbols indicate man-made lights, except for the asterisks, t. Open triangles denote the
most traditional vapor discharge lights:
ª, Seven classic fluorescent light spectra from Wyszecki and Stiles’s book17: STWM = Standard
Warm White;  WHIT = White;  DLGT = Daylight; WMDX = Warm White Deluxe; SOFT =
Soft White; CWDX = Cool White Deluxe.

ª, Other traditional lights: HPMV = High Pressure Mercury Vapor18; HAL = Metal Halide19 (a
vapor discharge lamp not to be confused with tungsten-halogen); CLWT = Cool White
Fluorescent, recent measurement20; HPS = High Pressure Sodium18.

Both thin and bold open squares denote lights for which special claims of clear seeing have been
made:
~, V = Vita-Lite21; LUCH = LumiChrome 1XX22; PR3023, PR4123, PR5K19, PR7K19 Prime
Color fluorescent tubes, as designed by Thornton, but no longer sold. , S35, 1, S47 = Solux
filtered tungsten-halogen types24.

Four asterisks denote idealized 3-band lamps, each adjusted to have the same chromaticity as
one of the formerly commercial prime color fluorescent types:
t, Idealized prime color lights with all power in narrow bands at 450, 540, and 610 nm.

Filled triangles denote commercially available lamps for which some color-rendering claim is
made, • : PL30, PL35, PL41 = 3-band fluorescent tubes; 3, 2, MC4Q are metal halide types;
MCNA is high-pressure sodium25.

Four filled diamonds, —, show the example of a 2900 K blackbody source filtered by
neodymium glass, as explained in the introductory article1. To recall, glass containing Nd2O3 has
a narrow “notch” absorption band at 583 nm, along with some absorption at other wavelengths.
The absorption of the yellow light makes reds and greens more saturated. In Fig. 5, the
diamonds, —, are numbered 0, 1.7, 4.2, and 6.3, indicating the percentage of Nd2O3 in the glass,
with a thickness of 1.2 mm. In Fig. 6, only the 6.3% point is labeled, but the 0% point is the one
on the blackbody curve, and the others are in sequence.

The filled circle, , S, is the sulfur lamp. It is temporarily off the market, and the SPD is subject
to change when it becomes available again26.
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The prototypical color-rendering comparison looks at two lights with the same chromaticity, but
dissimilar spectra1. However, the matrix method applies for lights that are not a chromaticity
match, Fig. 4. We see that blackbody radiation tends to reveal reds and greens better at lower
temperature (Fig. 5), but blackbodies reveal blues and yellows better at higher temperatures (Fig.
6). The variation with temperature is greater for P33 than for P22. Curiously, P22 and P33 for mean
JMW daylight (+ signs), as functions of correlated color temperature, track quite close to the
curve for blackbody.

In Fig. 6, we see P33 values bunching along the sloping curve for blackbody radiation, much
more than do the P22 values in the other figure. Most of the alphabetic labels have been omitted
in Fig. 6 because they would pile up in an unreadable way. Every light, of course, has the same
temperature and symbol in both figures.

Insight
Fluorescent lamps were introduced in 1938 or 193927. Color rendering was discussed in the
1940s and the discussion became somewhat frozen in place with the initial publication of the
Color Rendering Index in 196513. The classic lamp types, ª, were a familiar reality for that
earlier discussion; they shared a tendency to dull reds and greens, a flaw that was acknowledged
and partially remedied by the “deluxe” designs. In general, the lights for which special claims
have been made, 9, give higher values of P22 than do the classic types at the same color
temperatures. The idealized three-band lights, t, show that enhancement of reds and greens is
also possible and three-phosphor lamps exploit this idea.

Blackbody is comparable to daylight in Figs. 5 and 6, within the domain of the JMW model,
confirming blackbody as a reasonable standard of normality at lower temperatures. Nonetheless,
low color temperatures give low values of P33. Solux lamps, invented by Kevin McGuire28, are
filtered tungsten-halogen sources designed to resemble daylight (or blackbody) at temperatures
higher than the actual temperature of the filament. This bluer light gives higher P33. An
unfiltered tungsten-halogen source has a color temperature of 2900 K to 3000 K. In Figs. 5 and 6
a filled diamond, —, sits on the blackbody curve at 2900 K. The Solux lamps, denoted by three
bold squares, , indeed fall near the curve of blackbodies, at higher P33, the better for us to see
blues and yellows.

The sequence of filled diamonds, —, shows that a neodymium filter adjusts blackbody light in a
different way, raising both P22 and P33, with little effect on correlated color temperature. Metal
halide lamps, symbol HAL, a later invention than high pressure mercury vapor, HPMV, can be
used in similar fixtures, but are less detrimental to reds and greens. Among the filled triangles,
•, 3, 2 and MC4Q are newer metal halide types with still higher values of P22. Vita-Lite, V, was
marketed as a full-spectrum lamp, said to resemble to daylight. Similar claims are or were made
for LUCH, Lumichrome 1XX. As measured by P22, these lights do indeed come closer to
daylight than do many of the classic types.

In the case of PR7K and PR5K, we see that two of the Ultralume lights, 9, gave P22 slightly
higher than the matched “ideal” narrow-band lamp, t. This echoes a comment in the
introductory article that “the ‘prime colors’ give a large triangular gamut, but not the largest
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possible.1” It appears that the green phosphor in these lights peaks to the gamut-increasing side
of 540 nm. To form her own opinion, the reader may refer to Fig. 7 and to Fig. 5 of the
introductory article1. In Fig. 7, Ultralume 7000K (solid curve) is compared to idealized prime
color (3 narrow triangular bands) and JMW daylight of the same chromaticity (long dashes), as
well as blackbody radiation of the same correlated color temperature (short dashes). The graphs
are matched for luminous power, Y, except that the idealized prime color is scaled by a factor of
0.05, in order to fit it on the same graph.

Moment of Reflection
Within Fig. 5 reside stories of evolving lamp designs. Warm White Deluxe, WMDX, was
intended to have a similar color temperature to Standard Warm White, STWM, but to give better
rendering of reds. The triangle for WMDX is above that for STWM, confirming that reds will be
redder (and greens greener) under the “deluxe” light. Though WMDX falls short of the
blackbody curve in its red-green gain P22, PR30 scores well above it, the result of systematic
engineering. Finally, an idealized prime color light plots as an asterisk slightly above the
formerly commercial PR30. At higher color temperature, a similar sequence can be traced, from
STCW to CWDX, then blackbody and average daylight, followed by PR41 and idealized prime
color.

DISCUSSION

Because one narrow band in the yellow can stimulate two cone systems, a light comprising two
narrow bands, one blue and one yellow, can match a given white chromaticity. Such a 2-bands
light will not reveal red and green objects in their true colors. For the eye to distinguish red and
green objects, light at actual red and green wavelengths must be supplied. This is clarified by the
comparison to color television, where the phosphor chromaticities define a triangular gamut of
possible mixtures1. Thornton’s prime color analysis formalizes this idea and adds additional
insight about the wavelengths that act strongly in color mixtures. Opponent color theory and
Cohen’s “Matrix R” analysis give similar results1.

Based on the notion of two independent hue dimensions, opponent theories lead to color
matching functions that look like mathematically orthogonal functions. Usually they are not
quite orthogonal, but I exploit this idea by deriving similar color-matching functions that are
orthogonal.

Object reflectances tend to be spectrally smooth, which can be expressed by a linear model, Eq.
(6). I let the basis functions of the linear model be the orthonormalized opponent-color functions,
Fig. 1. This orthonormal set is not quite a fixed thing, since the functions are made orthogonal
with a pivotal light as a weighting function, Eq. (9). From these assumptions—the usual “linear
model” for spectral reflectances with a couple novel features—the matrix theory of color
rendering is derived, Eq. (13).

The particular choice of basis functions and the resulting Eq. (13) have two benefits:
1. If the pivotal light is a popular source such as, say, D65, then the 3-vector representing the
object color is equivalent to the usual tristimulus vector [X  Y  Z]' for that object under D65, as
seen by the CIE 2° or 10° observer, as desired.
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2. The illuminant matrix can be used to estimate new tristimulus values from old when L1÷L2, as
in Fig. 2, but any linear model would do this. The opponent-color basis functions cause the
elements of the illuminant matrix P to have simple meanings. Of particular interest are P22 , the
gain for redness or greenness, and P33, the gain for blueness or yellowness.

This simple meaning for P22 leads us back to the starting point, the observation that many
artificial lights seen in daily life attenuate reds and greens, relative to daylight or blackbody
light. In Figs. 5 and 6, a large collection of natural and artificial lights are compared in two
messy graphs. Inventions claiming to enhance color vision generally do so by increasing P22

relative to some prior technology. An older invention, the neodymium filter, raises both P22 and
P33 when used with a 2900 K blackbody source.

Fundamental Metamers
Other sets of basis functions could have been used, such as those derived from reflectance data
by Vrhel et al10. Also, an alternate algebraic method could find the illuminant matrix without the
intermediate step of orthonormalizing the functions. In defense of the chosen method, I may say
that it does work: in Figs. 2-4, it gives reasonable estimates to the colorimetric shifts of real
objects, at least in the (x, y) projection. The Gram-Schmidt procedure is more than idle algebra,
since it is the vehicle by which the pivotal light enters the calculation. (In Eq. (14), L0 is not seen
in the square matrix, but it is implicit through the calculation of functions |q6j,.)

The linear model, Eqs. (8) and (11), represents a spectral reflectance as a combination of color
matching functions. This is what Cohen called the fundamental metamer of the object4. If L0 is
the equal-energy light, the model is exactly Cohen’s fundamental metamer, otherwise it is a
variation on the same idea. One consequence is that the model gives the exact tristimulus vectors
of objects under L0. In Figs. 2-4, the dashed arrows can be thought of as coming entirely from the
linear model, the arrow tails as well as the heads. By contrast, if a different set of basis functions
were used, there would be an “error of the approximation” under L0 (tail of dashed arrow) as
well as under L1. The linear model is in general not a good fit to the actual reflectance, but it
embodies that aspect of the reflectance that is accessible to the standard observer under L0.

Reproducibility
The method of Eq. (13) is clearly stated and deterministic. My software starts with the CIE 2°
color matching functions as supplied at 1 nm steps and 7 significant digits37. Appendices A and
C describe the brief manipulations to create the orthonormal basis. The illuminant matrix P,
Eq. (14), is self-explanatory and computed by matrix multiplications in as little as one line of
computer code; see Appendix D. Easily duplicated light source spectra include blackbody and
JMW daylight.

One issue must be handled carefully in order that numerical results be completely reproducible.
That is the matter of normalizing the light. An illuminant matrix P describes a substitution
L0÷L1 and the mathematical logic could readily express the fact that L1 has higher or lower
illuminance than L0. We want instead that L1’s absolute power level not affect the results.
Assume first that the pivotal light is Equal Energy, L0 = 1. Note that the first basis function |q61, is
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nearly unchanged by the Gram-Schmidt process; it is the familiar |y6,, renormalized so that
+q61|q61, = 1. To make |q61, invariant for other choices of pivotal light, L0 is normalized so that it
does not affect this equality, +q61|L0 q61, = 1, with |q61, not adjusted. This is taken as the canonical
normalization, and L1 is similarly normalized:

L1 ² L1(+q61|q61,/+q61|L1 q61,) . (2)

With attention to this detail, applying Eq. (2) to L0 and to L1, numerical results should be fully
repeatable. When this is done, P11 = 1, as in Eq. (17), for example.

Cautionary remarks
Please keep in mind that the method presented is inherently a matrix theory. In Figs. 5 and 6, the
equal energy light is taken as the pivotal light and then for each light Lj, a rendering matrix
P(z, L0÷Lj) is computed, Eq. (14). Then two diagonal elements of that matrix are graphed, with
color temperature on the horizontal axis. The figures are interesting and based on logic.
However, it would be wrong to begin taking ratios among values of P22, say, and make
inferences from that. What is authorized by logic is to use the operations of matrix inverse and
matrix multiplication to estimate something. For instance,
P(z, Lj÷Lk) . P(z, L0÷Lk)P

!1(z, L0÷Lj). How accurate and useful this estimate might be, that is
a question for another day.

This article is intended to discuss the general issue of color rendering, the derivation of a
method, and the application of that method to some light sources of practical interest. The results
are not meant as a consumer guide for comparing specific products. Some data were received
directly from metrologists, while others may have been redrawn, with some loss of precision. In
Fig. 5, two cool white fluorescent lights appear, STCW and CLWT, fairly dissimilar in the
results they give. I consider the underlying spectra reliable in both cases. Therefore, there is
some variation between vendors, or variation during the three decades that separate the
measurements. To compare specific lights, the matrix method should be used with fresh test
data.

Object Colors in Real Life
Color—meaning chromatic color and not just black-white—is part of normal vision and of
normal life. Red-green contrast participates in edge detection29,30, and color can aid in
segmenting the image. These basic steps precede recognition. Because of the eye’s longitudinal
chromatic aberration, color vision can and does participate in vergence accommodation—the
focusing of the eye31. On a metallic object, say a brass teapot, highlights are the color of the
metal, while a dielectric object, such as a ceramic teapot, has highlights that are
white—approximately the color of the light source. Consider a red bell pepper on a gray
background; color defines the vegetable’s shape against the background, it identifies it as red,
not green, and it may participate in the consumer’s perception of quality. In focusing the eye,
seeing the teapot or pepper, color rendering plays a role. To see the red or the green pepper
properly, one needs red and green light. In a school, library, office or kitchen, full use of color
vision requires actual red, green, and blue light, just as it does with a video screen.
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In this article and the preceding one1, we have seen that color rendering is a matter of systematic
object chromaticity shifts. If broadband lights such as daylight and blackbody are the norm, then
artificial lights often lose the chroma of reds and greens; similar effects on blues and yellows can
also arise. This has been understood by a few in the lighting industry and elsewhere, but not
clearly discussed or quantified. A number of inventors have understood and taken action to
improve color rendering.

When a light systematically loses redness and greenness of objects, this is stimulus deprivation.
The eye presumably adapts to the chromaticity of the source. After adaptation, what is needed
for stimulation is that areas near to each other on the retina be far from each other in color space,
in the dimensions of red vs green, blue vs yellow, and black versus white.

Broad statements are often made that “of course, daylight provides the best vision because
humans evolved in daylight.” Such remarks lead to a more technical question: what does
daylight do that other lights fail to do? One answer is that the daylight spectrum affords good
color contrasts, Figs. 5 & 6. A further answer is that the sun has high luminance and small
angular subtense. (The sun covers 6×10!5 sr or about 10!5 of the sky dome’s 2B sr.) Daylight
thus engenders bright highlights, strong shading and cast shadows. Large area sources lose these
stimuli and transform highlights—a source of shape information—into veiling reflections, which
degrade the colors and contrasts of surfaces32. The effects of light source size are easier to
describe in words and equations33 than are color rendering effects. However, lighting discussions
often operate on the peculiar assumption that what is most obvious need not be studied. My point
here is that many lights cause stimulus deprivation because of color rendering, but this is not the
only way that lighting may degrade stimuli. Heschong-Mahone Group performed two studies
showing clear benefits of daylight entering classrooms and retail stores by windows and
skylights34. In explaining the results within the school lighting report, the authors refer to
highlights and color rendering as areas in which daylight may be superior to artificial lighting.
My view is that such differences among lighting systems indeed exist33, and more can be done to
discuss them in numbers and clear words.

CONCLUSION
Color rendering is not an issue of non-linearities in the visual system or elsewhere. The issues
are basic and reside in the physical interaction of the light, the colored object, and the eye. If the
eye were replaced by a television camera whose 3 sensitivity functions were not equivalent to
human cone sensitivities, a similar matrix method could be derived for the camera. Under a 2-
bands light, the gamut of colors would collapse for the camera as for the eye.
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Appendix A: An opponent-colors model similar to Guth’s

In past articles2,15,16, I have used an opponent-colors model that was developed by Sherman Lee
Guth5. He developed this model to describe such phenomena as adaptation at a stage beyond the
visual receptors. Looking back at what I did with this model, it was useful for its simplicity, and
not so much for its intended meaning.
Guth’s original model5 depended on receptor sensitivities36 that in turn depended on a slightly
modified version of the CIE 2° color-matching functions. For simplicity, I now use Guth’s
transformations, but apply them to the 1-nm version of the unmodified CIE functions17,37. Where
the original model had weighting factors at the receptor 
and opponent levels2,5, I set those to unity, which allows them to be omitted. The receptor
sensitivities are then expressed in terms of the workaday CIE color matching functions by:

[+r6| +g6| +b6|]'  =  M1[+x6| +y6| +z6|]' (A1)

where M1 (A2)=
−

−
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and prime, ', indicates matrix transpose. (Only the indicated 1×3 row matrices are transposed.
The bras become the rows.)

The receptor outputs are added and subtracted to give opponent-color signals:

[+a6| + t6| +d6|]'  =  M2[+r6| +g6| +b6|]' (A3)

where M2 (A4)= −
−
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While it is interesting to see the receptor sensitivities, the opponent-color result is of primary
interest. To go from the familiar color matching functions to opponent ones in one step, we
notice that

[+a6| + t6| +d6|]' = M2M1[+x6| +y6| +z6|]'  , (A5)
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where

M2M1 (A6)= − −
− −
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A technicality intrudes here. Eq. (A6) is the “official” version of these numbers from reference
5. This is what Guth intended, particularly that the achromatic sensitivity +a6| be equal to the
familiar +y6| times the constant 0.9341. When I multiply the matrices M2 and M1 using double or
single precision arithmetic, I get discrepancies in the fourth decimal place such that, for instance,
the two zeroes are not zero. In some actual calculations, I may indeed use my calculated value
for M2M1, rather than Eq. (A6).

The small numerical discrepancies are not important. Quite important is Guth’s reading on the
meaning of the traditional CIE luminosity function = V8 = +y6|. His research had focused on
heterochromatic brightness additivity, meaning experiments in which a subject is presented with
two fields of different colors, and reports which is brighter, or adjusts one field to make them
equally bright. In those experiments, colors add vectorially, not as predicted by the scalar
summation built into the usual light meter. This is not construed to mean that “light meters are
wrong,” but rather  that traditional photometry predicts the response of one of the three second-
stage  systems within the visual system. Heterochromatic brightness experiments elicit a
response that can be described in terms of vector addition of the second-stage responses, [+a6|S,
+ t6|S, +d6|S,]' , where |S, is the stimulus light38.

The key idea is this: traditional photometry, embodied in +y6| and equally embodied in +a6|, is
valid but is not the whole story. What is the rest of the story? It is everything to do with color,
including vector brightness and color matching. Color rendering, as treated in this article, is
based on the facts of color matching.

Now, what are the 3 functions +a6|, + t6|, +d6|? First of all, they are color-matching functions,
completely equivalent to +x6|, +y6|, +z6|. Further, +a6| = 0.9341+y6|, in other words +a6| is the usual
luminance sensitivity function, multiplied by a scalar constant. Function + t6| is red-green
sensitivity, called the tritanopic function by Guth because it is the subsystem that even a
tritanope, a blue-blind person, would have. Function +d6| is blue-yellow sensitivity, called
deuteranopic because it is the subsystem that even a deuteranope would have. The set of
functions {+a6|, + t6|, +d6|}, when graphed, look as if they could be orthogonal functions. They are in
fact not orthogonal, but are close enough that when they have been orthogonalized by the Gram-
Schmidt procedure, Fig. 1, they still look like opponent-color functions. The function sets
{+r6|, +g6|, +b6|} and {+a6|, + t6|, +d6|}, derived from the normal CIE 2° functions by Eqs. (A1, A5), are
graphed and discussed in the introductory article1.
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Appendix B, Notation of Bras and Kets

Much of the algebra is developed using “bras” and “kets”14,15, in order to make visible the
transition between orthogonal function methods, and matrix algebra. An alternate approach treats
all functions as matrices from the beginning 39. Functions of wavelength, say f(8), g(8), are
represented by bras, +f*, or kets, *g,. When a bra directly precedes a ket, the resulting bracket
indicates an inner product:

 , or (B1)f g f g d| ( ) ( )=
∞

∫ λ λ λ
0

  , (B2)f g f g| =
=
∑ λ λ
λ 360

830

for example.

A ket preceding a bra, *g,+f*,  does not indicate an inner product. If we let kets be column
vectors, and let bras be row vectors, then +f*g, is a matrix product with a scalar result, consistent
with Eq. (B2). In other words, +f* is the transpose of *f,. In +f*g,, the vertical line is a sort of
punctuation with little meaning. If a third function is inserted, as in +f*Lg,, it is understood that L
and g are multiplied wavelength-by-wavelength. 

This notation is intended to keep the concepts of inner products and orthogonal functions
in view. In Eq. (15), the key result, every matrix element is seen to result from an inner product
involving such meaningful functions as the light’s SPD, the surface’s reflectance, and the
opponent basis functions.

Appendix C: Gram-Schmidt Orthogonalization

A review of the Gram-Schmidt procedure may help to make the overall discussion more clear.
When derived with no weighting function, the orthonormal functions have a certain scale on the
ordinate of Fig. (1). To minimize the effect of the weighting function L0(8) on ordinate values,
we apply the canonical normalization of Eq. (2):

L0 ² L0(+a6|a6,/+a6|L0 a6,). (C1)

Eq. (C1) is an extra step preceding the usual G-S process. The arrow, ², means that L0 is
replaced by something else, in this case by a re-scaled version of itself. This notation, used to
avoid defining more and more variables, corresponds to what one often does in a computer
program.

The initial functions, in sequence, are {+a6|, + t6|, +d6|}. The first function +a6| is normalized to
become +q61|:

+q61| = +a6|/(+a6|L0a6,)
½  . (C2)

Then +q62| is the second function, minus the projection of + t6| onto +q61|:
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+q62| = + t6|!+ t6|L0 q61,+q61|  . (C3)

Step (C3) is the key step, which makes +q62| orthogonal to +q61|. Now normalize +q62|,

+q62| ² +q62|/(+q62|L0q62,)
½  . (C4)

With orthonormal functions +q61| and +q62| determined, +q63| is +d6| minus the projection of +d6| onto
each of those:

+q63| = +d6|!+d6|L0 q61,+q61|!+d6|L0q62,+q62|  . (C5)

Then +q63| is normalized:

+q63| ² +q63|/(+q63|L0q63,)
½  . (C6)

Now complete for three basis vectors, the process can be extended indefinitely. From each of the
initial set of vectors is subtracted its projections onto all the previous orthonormal vectors. That
result is then normalized and the process repeated.

For a quick review of what motivates this process, let Eq. (C3) be post-multiplied by |L0 q61, :
+q62|L0 q61, = + t6|L0 q61,!+ t6|L0 q61,+q61|L0 q61,  . (C7)

Since +q61|L0 q61,  = 1, then +q62|L0 q61, = 0, which was the goal. Step (C3) causes +q62| to be
orthogonal to +q61|, step (C5) makes +q63| orthogonal to +q61| and to +q62|, and so forth.

Appendix D: Fun with Orthonormal Functions

Versions of Eq. (6) appear frequently in science and engineering:

 . (6)s c bi ij j
j

k

= +
=
∑
1

...

To make this useful, two things are needed: a set of basis functions |bj, appropriate to the task at
hand, and a formula for the coefficients cij.

As for the set of color matching functions |q6j,, used as basis functions in this article, they are at
least nonzero over the proper domain—the visible spectrum. Regarding coefficients cij, the
answer is simple. So long as the basis functions are orthonormal, the formula for the coefficients
is always found by the same short derivation. This leads to a shorthand method for working with
Eq. (6).

Suppose that functions |bj, are orthonormal when inner products are taken with weighting
function L0, that is +biL0|bj, = *ij . Then multiply Eq. (6) on the left by +bmL0| to give 
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  . (D1)b L s c b L bm i ij m j
j

k

0 0
1

= +
=
∑ ...

Applying the orthonormal property,

. (D2)b L s cm i ij mj
j

k

0
1

= +
=
∑ δ ...

In the sum, only when j = m is *mj = 1, rather than 0. Therefore, the coefficient is

cim = +bmL0|si,  , (D3)

and substituting Eq. (D3) into Eq. (6) yields

  . (D4)s b b L si j
j

k

j i= +
=
∑
1

0 ...

The bracket on the right is the explicit expression for coefficient cij. A physicist would say that in
Eq. (D4), |si, is expanded in the basis |bj,, though he would prefer to have an infinite set of basis
functions. Instead of  using “+...” to denote additional terms, we can write

  , (D5)s b b L si j
j

k

j i≈
=
∑
1

0

agreeing that this has the same meaning as Eq. (D4).

Inspecting Eq. (D5), we see |si, on both sides, but on the right-hand side, it has additional
symbols in front of it. Since these symbols operate on |si, and return the same vector, they act as

a unity operator35. Using the symbol  for the unity operator,

  to expand a ket, |f, or (D6a)≈
=
∑ b b Lj
j

k

j
1

0

 to expand a bra, +f|. (D6b)≈
=
∑ L b bj
j

k

j0
1

Absent the weighting function L0 , the two forms would be the same. The unity operator allows
Eq. (12) to be derived in one step:

  . (12)Q q L s q L q q L sr r i r j
j

j i= = +
=
∑1 1
1

3

0 | ...
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    8

≈
=
∑ q q Lj
j

j
1

3

0

In  other words, to expand the function |si, in terms of  the function |q6j,, simply insert the unity
operator in front of it. The summation symbol can then be commuted to the front because +q6rL1|
does not depend on j.

<Note to editor, typesetter, etc. Please be careful of the arrangement of
Eq. (12). The vertical arrow points directly before si to indicate the
expression below being shoved in at that point. A vertical arrow with a
larger arrowhead would be better; I used what was available. Also, it is
tremendously important to use the special symbol  . I can supply this
symbol as a computer file (encapsulated postscript, eps), or you may
already have it on a floppy/CD that I gave you, or you may have this symbol
in your resources. Contact me at jworthey@starpower.net or 301-977-3551.
JAW.>

Eq. (12) and (13) express the key idea of a matrix to predict color rendering effects. To make use
of Eq. (13) may require tristimulus vectors and matrices to be transformed so that they refer to
another basis, such as {x6, y6, z6}. One way to do this is by using the unity operator. Suppose that
the pivotal light is L0. Let +x6| be post-multiplied by unity operator (D6b):

+x6| = +x6|  = (D7)x L q qj
j

j| 0
1

3

=
∑

and similarly for +y6| and +z6|. The result is exact, not approximate, because {+x6|, +y6|, +z6|} are
linear combinations of the 3 functions +q6j|.
In matrix notation,

   . (D8)

x
y
z

x L q x L q x L q
y L q y L q y L q
z L q z L q z L q

q
q
q
















=

































0 1 0 2 0 3

0 1 0 2 0 3

0 1 0 2 0 3

1

2

3

The square transformation matrix can be called T(z÷XYZ). The matrix inverse will give the
reverse transformation: T(XYZ÷z) = T!1(z÷XYZ). T(z÷XYZ) is easy to calculate within a
computer language that permits matrix operations. Note that
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T(XYZ÷z)  . (D9)[ ]=
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With the vectors thus collected into matrices, the transformation matrix can be found by one line
of programming. A similar technique may be used with Eq. (14). The matrices in Eq. (D9) are
large, with dimensions such as 3×471 and 471×3. Now let |N, be any radiance presented to the
CIE 1931 observer. Then X = +x6|N,, etc. Post-multiplying Eq. (D8) by |N,, we see that the same 
square matrix will convert tristimulus values. That is, 

[X  Y  Z]' = T(z÷XYZ)[Q1  Q2  Q3]' . (D10)

Eq. (D10) was derived without reference to a particular light or surface, to emphasize its
generality.

Eq. (13) or (15) is the color rendering prediction, expressed in terms of the orthonormal basis.
The transformation of Eq. (D8), and its inverse, can convert the color rendering prediction to
another basis, such as {X, Y, Z}. Eq. (15) is first multiplied through on the left by T(z÷XYZ).
Then Q(z, L0, si) is replaced by T!1(z÷XYZ)[X Y Z]' . This transforms the color rendering
equation to

. T(z÷XYZ) P(z, L0÷L1)T
!1(z÷XYZ)  . (D11)
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A color rendering matrix in the non-opponent XYZ system is thus created from one derived in
the orthonormal system:

P(XYZ,  L0÷L1) = T(z÷XYZ) P(z, L0÷L1)T
!1(z÷XYZ)  . (D12)

Conceptually, the tristimulus vector on the right in Eq. (D11) is converted to the orthonormal
system, the color rendering matrix P(z, L0÷L1) is applied, and then the result is converted to
XYZ form. Eq. (D9) and (D12) generalize to convert to any other system, such as Guth’s
original system (Appendix A). The conversion (D12) is easily done for such a use as plotting
estimated color shifts in the XYZ system, Figs. 2-4. For interpreting the elements of P, it makes
more sense to stick with an opponent system such as the orthonormal one, or Guth’s.

Textbook origins
Most of the mathematical expressions in this article can be read as simple matrix operations.
However, the idea of approximating a function by a series, and the steps that call on the
orthogonality relation, +biL0|bj, = *ij, these come from Fourier Series. The theorems of Fourier
Series textbooks will carry over, including the proof that each nonzero term added to the series
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reduces the sum-squared error of the approximation. The technique of generalized Fourier series
methods leading to matrix elements with specific meanings comes from quantum mechanics.
Curiously, the unity operator above, Eq. (D6), is a projection operator like Cohen’s Matrix R.

Indeed if L0 = 1 (the Equal Energy light), and k=3, then  = R. Here, rather than emphasize the
unity operator as a large square matrix, we allow it to fade away in the derivation of matrix P.
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Color Rendering: a Calculation That Estimates Colorimetric Shifts
James A. Worthey

Figure Captions

Figure 1. Set of orthonormalized opponent color functions. As color matching functions, these
are equivalent to the usual CIE 2° observer. Solid = achromatic sensitivity q61(8), proportional to
the familiar y6(8). Long dashes = q62(8) = red-green sensitivity. Short dashes = q63(8) = blue-
yellow sensitivity.

Figure 2. Chromaticity shifts of 36 Munsell papers are graphed. Arrow tails show the
chromaticities under JMW daylight, while arrow heads represent chromaticities under Cool
White fluorescent light. Both lights have the same chromaticity, (0.3825, 0.3850), indicated by
+. Solid arrows are computed exactly, while the dashed arrows are estimated according to Eq.
(13).

Figure 3. The lighting transition is the same as in Fig. 2, from JMW daylight to Cool White
fluorescent of the same chromaticity, (0.3825, 0.3850), indicated by +. Now only 8 Munsell
papers are represented, the ones used in the Color Rendering Index method. Again, the solid
arrows show exact results, while the dashed arrows are estimated using Eq. (13).

Figure 4. Again the 36 Munsell papers are seen, but the transition is from JMW daylight at
10 000 K to JMW daylight at 4800 K. Solid and dashed arrows are used as before.

Figure 5. Matrix element P22, the gain for red and green, is graphed versus correlated color
temperature for various lights. The pivotal light is Equal Energy. See text for details.

Figure 6. Similar to Fig. 5, but matrix element P33, the gain for blue and yellow, is graphed. See
text.

Figure 7. Comparison of idealized prime color to a prime color light that was once commercial,
plus two other lights of similar chromaticity. The heavy solid line, seen as 3 narrow triangles, is
the idealized prime color light, realistically graphed except that it is scaled by a factor of 0.05;
(x,y) = (0.2695, 0.2892). The thin solid curve is the prime color fluorescent light, (0.2695,
0.2892); short dashes = 11,272 K blackbody, (0.2746, 0.2810); long dashes = JMW daylight,
(0.2695, 0.2891).

LFigures are supplied in a separate pdf file.


